login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143062 Expansion of false theta series variation of Euler's pentagonal number series in powers of x. 7
1, -1, 1, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) = sum over all partitions of n into distinct parts of number of partitions with even largest part minus number with odd largest part.

In the Berndt reference replace {a -> 1, q -> x} in equation (3.1) to get g.f. Replace {a -> x, q -> x} to get f(x). G.f. is 1 - f(x) * x / (1 + x).

REFERENCES

G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See Section 9.4, pp. 232-236.

Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, see p. 41, 10th equation numerator.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

B. C. Berndt, B. Kim, and A. J. Yee, Ramanujan's lost notebook: Combinatorial proofs of identities associated with Heine's transformation or partial theta functions, J. Comb. Thy. Ser. A, 117 (2010), 957-973.

I. Pak, On Fine's partition theorems, Dyson, Andrews and missed opportunities, Math. Intelligencer, 25 (No. 1, 2003), 10-16.

FORMULA

a(n) = b(24*n + 1) where b() is multiplicative with b(p^(2*e)) = (-1)^e if p = 5 (mod 6), b(p^(2*e)) = +1 if p = 1 (mod 6) and b(p^(2*e-1)) = b(2^e) = b(3^e) = 0 if e>0.

G.f.: Sum_{k>=0} x^((3*k^2 + k) / 2) * (1 - x^(2*k + 1)) = 1 - Sum_{k>0} x^((3*k^2 - k) / 2) * (1 - x^k).

G.f.: 1 - x / (1 + x) + x^3 / ((1 + x) * (1 + x^2)) - x^6 / ((1 + x) * (1 + x^2) * (1 + x^3)) + ...

G.f.: 1 - x / (1 + x^2) + x^2 / ((1 + x^2) * (1 + x^4)) - x^3 / ((1 + x^2 ) * (1 + x^4) * (1 + x^6)) + ...

|a(n)| = |A010815(n)| = |A080995(n)| = |A199918(n)| = |A121373(n)|.

a(n) = A026838(n) - A026837(n) (Fine's theorem), see the Pak reference. [Joerg Arndt, Jun 24 2013]

a(n)=1 if n = k(3k+1)/2, a(n)=-1 if n = k(3k-1)/2, a(n)=0 otherwise. [Joerg Arndt, Jun 24 2013]

G.f.: sum(n>=0, (-q)^n * prod(k=1..n-1, 1+q^k) ). [Joerg Arndt, Jun 24 2013]

a(n) = - A203568(n) unless n=0. a(0) = 1. - Michael Somos, Jul 12 2015

EXAMPLE

a(5) = -1 +1 -1 = -1 since 5 = 4 + 1 = 3 + 2. a(7) = -1 +1 -1 +1 +1 = 1 since 7 = 6 + 1 = 5 + 2 = 4 + 3 = 4 + 2 + 1.

G.f. = 1 - x + x^2 - x^5 + x^7 - x^12 + x^15 - x^22 + x^26 - x^35 + x^40 + ...

G.f. = q - q^25 + q^49 - q^121 + q^169 - q^289 + q^361 - q^529 + q^625 - q^841 + ...

MATHEMATICA

a[ n_] := If[ SquaresR[ 1, 24 n + 1] == 2, (-1)^Quotient[ Sqrt[24 n + 1], 3], 0];

a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ IntegerQ@m, (-1)^Quotient[ m, 3], 0]]; (* Michael Somos, Nov 18 2015 *)

PROG

(PARI) {a(n) = if( issquare( 24*n + 1, &n), (-1)^(n \ 3) )};

CROSSREFS

Cf. A010815, A026837, A026838, A080995, A121373, A199918, A203568.

Sequence in context: A115513 A133080 A133985 * A010815 A206958 A206959

Adjacent sequences:  A143059 A143060 A143061 * A143063 A143064 A143065

KEYWORD

sign

AUTHOR

Michael Somos, Jul 21 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 21 23:05 EDT 2018. Contains 305646 sequences. (Running on oeis4.)