login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143050 A division-matrix vector Markov: where 8 matrices are projectively divided by a 9th matrix and then iterated in order: ( Imaginary part ) Matrices: m0 = Inverse[{{0, I}, {I, 1}}]: 9th; M[0] = {{0, -1}, {-1, -1}}.m0; M[1] = {{1, 0}, {-1, -1}}.m0; M[2] = {{-1, 0}, {-1, -1}}.m0; M[3] = {{0, 1}, {-1, -1}}.m0; M[4] = I*{{0, -1}, {-1, -1}}.m0; M[5] = I*{{1, 0}, {-1, -1}}.m0; M[6] = I*{{-1, 0}, {-1, -1}}.m0; M[7] = I*{{0, 1}, {-1, -1}}.m0. 0
0, -1, 0, 3, -3, 2, -5, 6, 0, -24, 23, -23, 47, 7, 88, 143, -376, -5, 5, 514, 755, 654, 2304, -2992, -3025, 3025, 2271, 11279, -720, 18847, -112, -48141, 48141, -29182, 85227, -95338, 8960, 381240, -389049, 389049, -761329, -69609, -1445240, -2268369, 6162200, -110613, 110613, -8541182, -12033565 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

This set of matrices as Moebius transforms and ratio=1/Sqrt[8]

gives a three part fractal. The object is to simulate

a SU(3) level of orthogonality using a division type set of Determinant and -1

matrices.

LINKS

Table of n, a(n) for n=1..49.

FORMULA

Matrices: m0 = Inverse[{{0, I}, {I, 1}}]: 9th; M[0] = {{0, -1}, {-1, -1}}.m0; M[1] = {{1, 0}, {-1, -1}}.m0; M[2] = {{-1, 0}, {-1, -1}}.m0; M[3] = {{0, 1}, {-1, -1}}.m0; M[4] = I*{{0, -1}, {-1, -1}}.m0; M[5] = I*{{1, 0}, {-1, -1}}.m0; M[6] = I*{{-1, 0}, {-1, -1}}.m0; M[7] = I*{{0, 1}, {-1, -1}}.m0; v(n)=M[Mod[n,7]].v(n-1); a(n)=Imaginarypart(v(n)[[1]]).

MATHEMATICA

Clear[M, v, n, a]; m0 = Inverse[{{0, I}, {I, 1}}]; M[0] = {{0, -1}, {-1, -1}}.m0; M[1] = {{1, 0}, {-1, -1}}.m0; M[2] = {{-1, 0}, {-1, -1}}.m0; M[3] = {{0, 1}, {-1, -1}}.m0; M[4] = I*{{0, -1}, {-1, -1}}.m0; M[5] = I*{{1, 0}, {-1, -1}}.m0; M[6] = I*{{-1, 0}, {-1, -1}}.m0; M[7] = I*{{0, 1}, {-1, -1}}.m0; v[0] = {1, 1}; v[n_] := v[n] = M[Mod[n, 7]].v[n - 1]; ar = Table[Re[v[n][[1]]], {n, 0, 50}]; ai = Table[Im[v[n][[1]]], {n, 0, 50}]

CROSSREFS

Sequence in context: A320776 A279056 A265751 * A214919 A290599 A070163

Adjacent sequences:  A143047 A143048 A143049 * A143051 A143052 A143053

KEYWORD

uned,sign

AUTHOR

Roger L. Bagula, Oct 13 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 00:32 EST 2019. Contains 329383 sequences. (Running on oeis4.)