This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143024 Triangle read by rows: T(n,k) is the number of non-crossing connected graphs on n nodes on a circle having root (a distinguished node) of degree 1 and having k edges (n >= 2, 1 <= k <= 2n-4). 0
 1, 0, 2, 0, 0, 7, 2, 0, 0, 0, 30, 20, 4, 0, 0, 0, 0, 143, 156, 65, 10, 0, 0, 0, 0, 0, 728, 1120, 720, 224, 28, 0, 0, 0, 0, 0, 0, 3876, 7752, 6783, 3192, 798, 84, 0, 0, 0, 0, 0, 0, 0, 21318, 52668, 58520, 36960, 13860, 2904, 264, 0, 0, 0, 0, 0, 0, 0, 0, 120175, 354200, 478170 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 COMMENTS Row n contains 2n-4 terms, the first n-2 of which are 0. Row sums yield A089436. T(n,n-1) = A006013(n-2). Sum_{k=2..2n-4} k*T(n,k) = A143025. LINKS C. Domb and A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358. P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999. FORMULA T(n,k) = 2*binomial(k-2, n-3)*binomial(3n-5, 2n-k-4)/(n-2) (n >= 3, 2 <= k <= 2n-4); T(2,1)=1; T(2,k)=0 (k >= 2). The trivariate g.f. G=G(t,s,z) for non-crossing connected graphs on nodes on a circle, with respect to number of nodes (marked by z), number of edges (marked by t) and degree of root (marked by s) is G=z + tszg^2/[z-ts(g - z + g^2)], where g=g(t,z) satisfies tg^3 + tg^2 - (1 + 2t)zg +(1 + t)z^2 = 0 (see Domb & Barrett, Eq. (47); Flajolet & Noy, Eq. (18)). EXAMPLE T(3,2)=2 because we have {AB,BC} and {AC, BC} (A is the root). Triangle starts:   1;   0,   2;   0,   0,   7,   2;   0,   0,   0,  30,  20,   4;   0,   0,   0,   0, 143, 156,  65,  10; MAPLE T:=proc(n, k) options operator, arrow: 2*binomial(k-2, n-3)*binomial(3*n-5, 2*n-k-4)/(n-2) end proc: 1; for n from 3 to 10 do 0, seq(T(n, k), k=2..2*n-4) end do; % yields sequence in triangular form CROSSREFS Cf. A007297, A089436, A006013, A143025. Sequence in context: A246608 A100344 A094596 * A271971 A278157 A198232 Adjacent sequences:  A143021 A143022 A143023 * A143025 A143026 A143027 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, Jul 31 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 22 06:15 EST 2019. Contains 329389 sequences. (Running on oeis4.)