login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143019 Infinite square array read by antidiagonals: a(q,n) is the coefficient of z^n in the series expansion of C(z)^q/(1-4z)^(3/2), where C(z) = (1-sqrt(1-4z))/(2z) is the Catalan function (q,n = 0,1,2,...). 0
1, 1, 6, 1, 7, 30, 1, 8, 38, 140, 1, 9, 47, 187, 630, 1, 10, 57, 244, 874, 2772, 1, 11, 68, 312, 1186, 3958, 12012, 1, 12, 80, 392, 1578, 5536, 17548, 51480, 1, 13, 93, 485, 2063, 7599, 25147, 76627, 218790, 1, 14, 107, 592, 2655, 10254, 35401, 112028, 330818 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(q,n) = a(q-1,n) + a(q+1,n-1).

Row 0 is A002457; row 1 is A000531; row 2 is A029760; row 3 is A045720.

LINKS

Table of n, a(n) for n=0..53.

FORMULA

a(q,n) = Sum_{i=0..n} 4^i*binomial(2n-2i+q, n-i).

EXAMPLE

Array starts:

  1, 6, 30, 140,  630, ...

  1, 7, 38, 187,  874, ...

  1, 8, 47, 244, 1186, ...

  1, 9, 57, 312, 1578, ...

  ...

MAPLE

a:=proc(q, n) options operator, arrow: sum(4^i*binomial(2*n-2*i+q, n-i), i= 0.. n) end proc: aa:=proc(q, n) options operator, arrow: a(q-1, n-1) end proc: matrix(10, 10, aa); # yields sequence in matrix form

CROSSREFS

Cf. A002457, A000531, A029760, A045720.

Sequence in context: A261622 A046902 A204205 * A156921 A094214 A001622

Adjacent sequences:  A143016 A143017 A143018 * A143020 A143021 A143022

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Jul 24 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 06:08 EDT 2019. Contains 328106 sequences. (Running on oeis4.)