login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143019 Infinite square array read by antidiagonals: a(q,n)=is the coefficient of z^n in the series expansion of C(z)^q/(1-4z)^(3/2), where C(z)=[1-sqrt(1-4z)]/(2z) is the Catalan function (q,n=0,1,2,...). 0
1, 1, 6, 1, 7, 30, 1, 8, 38, 140, 1, 9, 47, 187, 630, 1, 10, 57, 244, 874, 2772, 1, 11, 68, 312, 1186, 3958, 12012, 1, 12, 80, 392, 1578, 5536, 17548, 51480, 1, 13, 93, 485, 2063, 7599, 25147, 76627, 218790, 1, 14, 107, 592, 2655, 10254, 35401, 112028, 330818 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(q,n)=a(q-1,n)+a(q+1,n-1).

Row 0 is A002457; row 1 is A000531; row 2 is A029760; row 3 is A045720.

LINKS

Table of n, a(n) for n=0..53.

FORMULA

a(q,n)=Sum(4^i*binom(2n-2i+q,n-i), i=0..n).

EXAMPLE

Array starts:

1 6 30 140 630 ...

1 7 38 187 874 ...

1 8 47 244 1186 ...

1 9 57 312 1578 ...

.......

.......

MAPLE

a:=proc(q, n) options operator, arrow: sum(4^i*binomial(2*n-2*i+q, n-i), i= 0.. n) end proc: aa:=proc(q, n) options operator, arrow: a(q-1, n-1) end proc: matrix(10, 10, aa); # yields sequence in matrix form

CROSSREFS

Cf. A002457, A000531, A029760, A045720.

Sequence in context: A261622 A046902 A204205 * A156921 A094214 A001622

Adjacent sequences:  A143016 A143017 A143018 * A143020 A143021 A143022

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Jul 24 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 15:01 EST 2017. Contains 295939 sequences.