The C_4 lattice and a continued fraction for $\log (2)$

Peter Bala, March 142024
A142993: the crystal ball sequence for the lattice C_4.
A142993(n) := $P(n)$ is the polynomial function

$$
P(n)=\left(2 \star_{n}+1\right)^{\wedge} 2 \star\left(4 \star^{\wedge}{ }^{\wedge} 2+4 * n+3\right) / 3 .
$$

A CAS such as Maple can be used to evaluate the series

$$
\operatorname{Sum}_{-}\{k=0 \ldots n\} 1 /((k+1) * P(k) * P(k+1))=17 / 12-2 * \log (2) .
$$

The purpose of this note is to convert the series to a continued fraction.

Recall the fundamental 3-term recurrences for the numerator and denominator of a continued fraction. If we write the finite continued fraction

$$
\mathrm{R}(\mathrm{n})=\mathrm{a}(1) /(\mathrm{b}(1)+\mathrm{a}(2) /(\mathrm{b}(2)+\ldots+\mathrm{a}(\mathrm{n}) /(\mathrm{b}(\mathrm{n}))))
$$

in the form

$$
R(n)=A(n) / B(n)
$$

then $A(n)$ and $B(n)$ are polynomials in $a(i), b(j)$, that, for $n>=$ 2, satisfy the 3-term recurrences

$$
\begin{aligned}
& A(n)=b(n) * A(n-1)+a(n) * A(n-2) \\
& B(n)=b(n) * B(n-1)+a(n) * B(n-2)
\end{aligned}
$$

with initial values

$$
\mathrm{A}(1) / \mathrm{B}(1)=\mathrm{a}(1) / \mathrm{b}(1)
$$

and

$$
A(2) / B(2)=a(1) * b(2) /(b(1) * b(2)+a(2)) .
$$

Returning to A142993, we define sequences $\{A(n)$: $n>=0\}$ and $\{B(n): n>=0\}$ by

$$
\begin{aligned}
& A(n)=B(n) * \operatorname{Sum}_{-}\{k=0 \ldots n\} 1 /((k+1) * P(k) * P(k+1)) \\
& B(n)=P(n+1) *(2 * n+2)!
\end{aligned}
$$

so that $A(n) / B(n)=\operatorname{Sum}_{-}\{k=0 . . n\} 1 /((k+1) * P(k) * P(k+1))$.
The sequence $\{B(n)\}$ is clearly integral; it will turn out that \{A(n)\} is also integral. The first few values are

| n | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A(n)$ | 2 | 164 | 18216 | 2744352 |
| A (n) | 66 | 5400 | 599760 | 90357120 |

We show that $\{A(n)\}$ and $\{B(n)\}$ satisfy the same 3 -term recurrence. Firstly, it is easy to check that $B(n)$ satisfies the 3-term recurrence

$$
u(n)=2 *\left(4 * n^{\wedge} 2+4 * n+33\right) * u(n-1)-4 * n^{\wedge} 2 *\left(4 * n^{\wedge} 2-1\right) * u(n-2) .
$$

We show that $A(n)$ satisfies the same recurrence (thus showing that $A(n)$ is an integer). By definition

$$
A(n)=B(n) * S u m _\{k=0 \ldots n\} 1 /((k+1) * P(k) * P(k+1)) .
$$

Hence

$$
\begin{aligned}
A(n+1)= & B(n+1) * \operatorname{Sum}_{-}\{k=0 \ldots n+1\} 1 /((k+1) * P(k) * P(k+1)) \\
= & B(n+1) * \operatorname{Sum}_{-}\{k=0 \ldots n\} 1 /((k+1) * P(k) * P(k+1)) \\
& +B(n+1) /((n+2) * P(n+1) * P(n+2)) \\
= & (B(n+1) / B(n)) * A(n)+B(n+1) /((n+2) * P(n+1) * P(n+2))
\end{aligned}
$$

Substituting $B(n)=P(n+1) *(2 * n+2)$! and multiplying both sides of the resulting identity by $(\mathrm{n}+2) * \mathrm{P}(\mathrm{n}+1)$ we find that

$$
\begin{align*}
(n+2) * P(n+1) * A(n+1)= & (n+2) *(2 * n+3) *(2 * n+4) * P(n+2) * A(n) \\
& +(2 * n+4)! \tag{1}
\end{align*}
$$

Hence

$$
\begin{align*}
(n+3) * P(n+2) * A(n+2)= & (n+3) *(2 * n+5) *(2 * n+6) * P(n+3) * A(n+1) \\
& +(2 * n+6)!
\end{align*}
$$

Multiplying (1) by (2*n + 5)*(2*n + 6) and subtracting from (2) and then replacing n with $n-2$ we find after a short calculation
that $A(n)$ satisfies the same 3 -term recurrence as satisfied by B (n) :

$$
A(n)=2 *\left(4 * n^{\wedge} 2+4 * n+33\right) \star A(n-1)-4 * n^{\wedge} 2 *\left(4 * n^{\wedge} 2-1\right) * A(n-2) .
$$

The first few coefficients of the recurrence are shown below.

It then follows from the fundamental recurrences satisfied by the numerators and denominators of a continued fraction that the series

$$
\begin{gathered}
\operatorname{Sum}_{_}\{k>=0\} 1 /((k+1) * P(k) * P(k+1)) \\
=\text { Limit__ }(n->O O\} A(n) / B(n)
\end{gathered}
$$

has the continued fraction expansion

By means of an equivalence transformation this is equal to the continued fraction

with partial numerators and partial denominators (after the first)
equal to $\mathrm{n}^{\wedge} 2^{*}\left(4 * \mathrm{n}^{\wedge} 2-1\right)$ and $2 *\left(4 * \mathrm{n}^{\wedge} 2+4 * \mathrm{n}+33\right)(=2 *((2 * \mathrm{n}+$
1)^2 + 2*(4^2))) respectively.

A similar result holds for the crystal ball sequences of the other C_n lattices.

