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A142993: the crystal ball sequence for the lattice C_4. 

A142993(n) := P(n) is the polynomial function

P(n) = (2*n + 1)^2 * (4*n^2 + 4*n + 3)/3.

A CAS such as Maple can be used to evaluate the series

Sum_{k = 0..n} 1/((k + 1)*P(k )*P(k+1)) = 17/12 – 2*log(2).

The purpose of this note is to convert the series to a continued

fraction.

Recall the fundamental 3-term recurrences for the numerator

and denominator of a continued fraction. If we write the finite 

continued fraction

 R(n) = a(1)/(b(1) + a(2)/(b(2) + ... + a(n)/(b(n))))

in the form 

R(n) = A(n)/B(n)

then A(n) and B(n) are polynomials in a(i), b(j), that, for n >=

2, satisfy the 3-term recurrences

A(n) = b(n)*A(n-1) + a(n)*A(n-2)

B(n) = b(n)*B(n-1) + a(n)*B(n-2)

with initial values

A(1)/B(1) = a(1)/b(1) 
and

A(2)/B(2) = a(1)*b(2)/(b(1)*b(2) + a(2)).

Returning to A142993, we define sequences {A(n) : n >= 0} and

{B(n) : n > = 0} by 

 A(n) = B(n) * Sum_{k = 0..n} 1/((k + 1)*P(k)*P(k+1)) 

 B(n) = P(n+1)*(2*n + 2)!,



so that A(n)/B(n) = Sum_{k = 0..n} 1/((k + 1)*P(k)*P(k+1)).

The sequence {B(n)} is clearly integral; it will turn out that 

{A(n)} is also integral. The first few values are

      n   |   0     1       2         3    
     - - - - - - - - - - - - - - - - - - 
     A(n) |   2   164   18216   2744352 
     B(n) |  66  5400  599760  90357120 

We show that {A(n)} and {B(n)} satisfy the same 3-term recurrence.

Firstly, it is easy to check that B(n) satisfies the 3-term 

recurrence

  u(n) = 2*(4*n^2 + 4*n + 33)*u(n-1) - 4*n^2*(4*n^2 – 1)*u(n-2).

We show that A(n) satisfies the same recurrence (thus showing 

that A(n) is an integer). By definition

   A(n) = B(n)*Sum_{k = 0..n} 1/((k + 1)*P(k)*P(k+1)).

Hence 

 A(n+1) = B(n+1)*Sum_{k = 0..n+1} 1/((k + 1)*P(k)*P(k+1)) 

   = B(n+1)*Sum_{k = 0..n} 1/((k + 1)*P(k)*P(k+1))  

            +  B(n+1)/((n + 2)*P(n+1)*P(n+2))

        = (B(n+1)/B(n))*A(n) + B(n+1)/((n + 2)*P(n+1)*P(n+2))

Substituting B(n) = P(n+1)*(2*n+2)! and multiplying both sides of 

the resulting identity by (n+2)*P(n+1) we find that

 (n+2)*P(n+1)*A(n+1)= (n+2)*(2*n+3)*(2*n+4)*P(n+2)*A(n)  

                       + (2*n + 4)!     ... (1)
Hence 

(n+3)*P(n+2)*A(n+2)= (n+3)*(2*n+5)*(2*n+6)*P(n+3)*A(n+1)  

                      + (2*n + 6)!           ... (2)

Multiplying (1) by (2*n + 5)*(2*n + 6) and subtracting from (2) 

and then replacing n with n - 2 we find after a short calculation 



that A(n) satisfies the same 3-term recurrence as satisfied by 

B(n):

  A(n) = 2*(4*n^2 + 4*n + 33)*A(n-1) - 4*n^2*(4*n^2 – 1)*A(n-2).

The first few coefficients of the recurrence are shown below.

n 1  2     3 4

  - - - - - - - - - - - - - - - - - - -  - - - - -
  
  4*n^2*(4*n^2 – 1)         12    240  1260  4032

 2*(4*n^2 + 4*n + 33)       82    114    162    226

It then follows from the fundamental recurrences satisfied by

the numerators and denominators of a continued fraction that the

series

 Sum_{k > = 0} 1/((k + 1)*P(k )*P(k+1))

= Limit_{n -> oo} A(n)/B(n)

has the continued fraction expansion

           2        
  ——————————————————
             12      
   66 - ——————————— 
                  240  
         82 -   ————  
                  114  –  1260 
                               ____
                                 
                                162  - ...

By means of an equivalence transformation this is equal to the 

continued fraction

       1        
  ——————————————————
            3     
   33 -  ——————————— 
               60  
         41 - ————  
               57 - ...

with partial numerators and partial denominators (after the first)



equal to n^2*(4*n^2 – 1) and 2*(4*n^2 + 4*n + 33) ( = 2*((2*n +

1)^2 + 2*(4^2)) ) respectively.

A similar result holds for the crystal ball sequences of the other

C_n lattices.


