This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A142975 n-th term of the Fibonacci-type sequence x(1)=1, x(2)=fibonacci(n), x(k+1)=x(k)+x(k-1) for k>1. 2
 1, 1, 3, 7, 17, 43, 109, 281, 727, 1891, 4929, 12871, 33641, 87985, 230203, 602447, 1576849, 4127635, 10805301, 28287049, 74053871, 193871371, 507555073, 1328785487, 3478787857, 9107556193, 23843845299, 62423922391, 163427829137 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Original definition: This sequence is derived from the Fibonacci sequence. Think of it as the Fibonacci sequence applied to itself. The sequence is generated by taking the n-th element of a recursive sequence whose first terms are 1 and the n-th element Fibonacci term. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (3,1,-5,-1,1). FORMULA a(n) = fib(1,fib(1,1,n),n). a(n) = fib(n-1) * fib(n) + fib(n-2) = A001654(n-1)+A000045(n-2). G.f.: (x^5-2*x^4+x^3+2*x^2-x) / (x^5-x^4-5*x^3+x^2+3*x-1). EXAMPLE The fifth term, 17, would be computed by hand like this: 1) Generate the first five values of the Fibonacci sequence: 1,1,2,3,5 2) The result of step 1 is the second value of the Fibonacci-type sequence used in computing 17. 3) Thus we know the first two terms of our Fibonacci-type sequence: 1,5... 4) The sequence can be extended through recursive addition f(n) = f(n-1) + f(n- 2): 1,5,6,11,17 5) The fifth element of this sequence is 17 and thus the answer. MAPLE F:= combinat[fibonacci]: seq (F(n-1)*F(n)+F(n-2), n=1..29); MATHEMATICA fts[{a_, b_, c_}]:=b*c+a; fts/@Partition[Fibonacci[Range[-1, 30]], 3, 1] (* or *) LinearRecurrence[{3, 1, -5, -1, 1}, {1, 1, 3, 7, 17}, 40] (* Harvey P. Dale, Nov 24 2016 *) PROG (Python) # replace leading dots by spaces .def fib(arb1, arb2, n-th): ........if n-th == 0: ................return arb1 ........if n-th == 1: ................return arb2 ........x = [0]*n-th ........x[0] = arb1 ........x[1] = arb2 ........for i in xrange(2, n-th, 1): ................x[i] = x[i-1]+x[i-2] ........return x[-1] .def fib2d(n): ........return fib(1, fib(1, 1, n), n) # the function fib2d will return the n-th term of the sequence. CROSSREFS Cf. A000045, A143077. Sequence in context: A238824 A161943 A134184 * A211277 A114589 A192908 Adjacent sequences:  A142972 A142973 A142974 * A142976 A142977 A142978 KEYWORD nonn,easy AUTHOR Gregory Nisbet (gregory.nisbet(AT)gmail.com), Jul 15 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 19:51 EDT 2019. Contains 326155 sequences. (Running on oeis4.)