login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A142968 Fifth column (m=4) of triangle A142963 divided by 16=2^4. 5
1, 179, 5280, 82610, 919615, 8284857, 64730022, 457217400, 2999230965, 18608607535, 110625457964, 636103699038, 3562753619915, 19541111960965, 105392471360850, 560747327119908, 2950726075955265, 15387821226034875, 79656442803398680, 409857988825489610 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..19.

FORMULA

a(n) = A142693(n+5,3)/2^4.

From Johannes W. Meijer, Feb 20 2009: (Start)

a(n) = 35a(n-1) - 560a(n-2) + 5432a(n-3) - 35714a(n-4) + 168542a(n-5) - 589632a(n-6) + 1556776a(n-7) - 3126949a(n-8) + 4777591a(n-9) - 5506936a(n-10) + 4703032a(n-11) - 2881136a(n-12) + 1195632a(n-13) - 300672a(n-14) + 34560a(n-15).

a(n) = (1155/8) + (472/3)*n - 5544*2^n + (120285/4)*3^n - 49280*4^n + (196875/8)*5^n - 64*2^n*n^3 - 864*2^n*n^2 - 3824*2^n*n + (187/3)*n^2 + 1215*3^n*n^2 + 12150*3^n*n - 8960*4^n*n + (32/3)*n^3 + (2/3)*n^4.

G.f.: (1 + 144*z - 425*z^2 - 7382*z^3 + 48451*z^4 - 96764*z^5 - 2559*z^6 + 257002*z^7 - 312444*z^8 + 88344*z^9 + 30240*z^10)/((1-z)^5*(1-2*z)^4*(1-3*z)^3*(1-4*z)^2*(1-5*z)).

(End)

CROSSREFS

Column m=3: 8*A142966.

From Johannes W. Meijer, Feb 20 2009: (Start)

Cf. A156925.

Equals A156920(n+4,4).

Equals A156919(n+4,4)/2^n.

(End)

Sequence in context: A142855 A069796 A177682 * A168537 A130736 A200955

Adjacent sequences:  A142965 A142966 A142967 * A142969 A142970 A142971

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Sep 15 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 18 23:26 EST 2018. Contains 299330 sequences. (Running on oeis4.)