|
|
A142964
|
|
a(n) = 6*2^n - 2*n - 5.
|
|
3
|
|
|
1, 5, 15, 37, 83, 177, 367, 749, 1515, 3049, 6119, 12261, 24547, 49121, 98271, 196573, 393179, 786393, 1572823, 3145685, 6291411, 12582865, 25165775, 50331597, 100663243, 201326537, 402653127, 805306309, 1610612675, 3221225409, 6442450879, 12884901821
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Previous name was: One half of second column (m=1) of triangle A142963.
Essentially a duplicate of A050488. - Johannes W. Meijer, Feb 20 2009
|
|
REFERENCES
|
Eric Billault, Walter Damin, Robert Ferréol, Rodolphe Garin, MPSI Classes Prépas - Khôlles de Maths, Exercices corrigés, Ellipses, 2012, exercice 2.22 (1) pp 26, 43-44.
|
|
LINKS
|
Table of n, a(n) for n=0..31.
Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
|
|
FORMULA
|
a(n) = A142693(n+2,1)/2.
From Johannes W. Meijer, Feb 20 2009: (Start)
a(n) = 4a(n-1) - 5a(n-2) + 2a(n-3) for n > 2 with a(0) = 1, a(1) = 5, a(2) = 15.
G.f.: (1+z)/((1-z)^2*(1-2*z)). (End)
a(n) = Sum_{i=0..n} Sum_{j=0..n} 2^min(i,j) (Billault et al) (compare with A339771 that has max instead of min). - Bernard Schott, Dec 16 2020
a(n) = 2*A066524(n+1) - A339771(n). - Kevin Ryde, Dec 17 2020
E.g.f.: 6*exp(2*x) - exp(x)*(5 + 2*x). - Stefano Spezia, Dec 17 2020
|
|
EXAMPLE
|
a(3) = 6*2^3 - 2*3 - 5 = 37.
|
|
MAPLE
|
seq(6*2^n-2*n-5, n=0..40); # Bernard Schott, Dec 16 2020
|
|
PROG
|
(PARI) Vec((1+z)/((1-z)^2*(1-2*z)) + O(z^50)) \\ Michel Marcus, Jun 18 2017
|
|
CROSSREFS
|
Cf. A142965 (m=2 column/4).
Equals A050488(n+1).
Equals A156920(n+1,1).
Equals A156919(n+1,1)/2^n.
Cf. A156925, A339771.
Partial sums of A033484.
Sequence in context: A213487 A005491 A050488 * A188282 A014316 A075717
Adjacent sequences: A142961 A142962 A142963 * A142965 A142966 A142967
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Wolfdieter Lang, Sep 15 2008
|
|
EXTENSIONS
|
New name using a formula of Bernard Schott by Peter Luschny, Dec 17 2020
|
|
STATUS
|
approved
|
|
|
|