This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A142963 Triangle read by rows, coefficients of the polynomials P(k, x) = (1/2) Sum_{p=0..k-1} Stirling2(k, p+1)*x^p*(1-4*x)^(k-1-p)*(2*p+2)!/(p+1)!. 15
 1, 1, 2, 1, 10, 4, 1, 30, 72, 8, 1, 74, 516, 464, 16, 1, 166, 2584, 7016, 2864, 32, 1, 354, 10740, 64240, 84480, 17376, 64, 1, 734, 40008, 450280, 1321760, 949056, 104704, 128, 1, 1498, 139108, 2681296, 14713840, 24198976, 10223488, 629248, 256, 1, 3030, 462264, 14341992 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Previous name: Table of coefficients of row polynomials of certain o.g.f.s. The o.g.f.s G(k, x) for the k-family of sequences S(k, n):= Sum_{p=0..n} p^k*binomial(2*p, p)*binomial(2*(n-p), n-p), k=0,1,... (convolution of two sequences involving the central binomial coefficients) are 1/(1-4*x) for k=0 and 2*x*P(k, x)/(1-4*x)^(k+1) for k=1,2,..., with the row polynomials P(k, x) = Sum_{m=0..k-1} a(n,m)*x^m). The author was led to compute the sums S(k, n) by a question asked by M. Greiter, Jun 27 2008. In order to keep the index k>=1 of Sigma(k, n) also for the polynomials P(k, x), their degree is then k-1. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..210 Wolfdieter Lang, First 10 rows and more. L. Liu, Y. Wang, A unified approach to polynomial sequences with only real zeros, arXiv:math/0509207v5 [math.CO], 2005-2006. FORMULA G(k, x) = Sum_{p=0..k} S2(k, p)*((2*p)!/p!)*x^p/(1-4*x)^(p+1), k >= 0 (here k >= 1), with the Stirling2 triangle S2(k, p):=A048993(k, p). (Proof from the product of the o.g.f.s of the two convoluted sequences and the normal ordering (x^d_x)^k = Sum_{p=0..k} S2(k, p)*x^p*d_x^p, with the derivative operator d_x.) a(k,m) = [x^m]P(k, x) = [x^m] ((1-4*x)^(k+1))*G(k,x)/(2*x), k>=1, m=0,1,...,k-1. For the triangle coefficients the following relation holds: T(n,m) = (m+1)*T(n-1,m) + (4*n-4*m-2)*T(n-1,m-1) with T(n,m=0) = 1 and T(n,m=n-1) = 2^(n-1), n >= 1 and 0 <= m <= n-1. - Johannes W. Meijer, Feb 20 2009 From Peter Bala, Jan 18 2018: (Start) (x*d/dx)^n (1/(sqrt(1 - 4*x)) = 2*x*P(n,x)/sqrt(1 - 4*x)^(n+1/2) for n >= 1. x*P(n,x)/(1 - 4*x)^(n+1/2) = (1/2)*Sum_{k >= 1} binomial(2*k,k)* k^n*x^k for n >= 1. P(n+1,x) = ((4*n - 2)*x + 1)*P(n,x) - x*(4*x - 1)*d/dx(P(n,x)). Hence the polynomial P(n,x) has all real zeros by Liu et al., Theorem 1.1, Corollary 1.2. (End) EXAMPLE Triangle starts:  [1,   2] [1,  10,     4] [1,  30,    72,      8] [1,  74,   516,    464,      16] [1, 166,  2584,   7016,    2864,     32] [1, 354, 10740,  64240,   84480,  17376,     64] [1, 734, 40008, 450280, 1321760, 949056, 104704, 128] ... P(3,x) = 1+10*x+4*x^2. G(3,x) = 2*x*(1+10*x+4*x^2)/(1-4*x)^4. MAPLE A142963 := proc(n, m): if n=m+1 then 2^(n-1); elif m=0 then 1 ; elif m<0 or m>n-1 then 0; else (m+1)*procname(n-1, m)+(4*n-4*m-2)*procname(n-1, m-1); end if; end proc: seq(seq(A142963(n, m), m=0..n-1), n=1..9); # Johannes W. Meijer, Sep 28 2011 # Alternatively (assumes offset 0): p := (n, x) -> (1/2)*add(Stirling2(n+1, k+1)*x^k*(1-4*x)^(n-k)*(2*k+2)!/(k+1)!, k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n, x), x) od; # Peter Luschny, Jun 18 2017 MATHEMATICA t[_, 0] = 1; t[n_, m_] /; m == n-1 := 2^m; t[n_, m_] := (m+1)*t[n-1, m] + (4*n-4*m-2)*t[n-1, m-1]; Table[t[n, m], {n, 1, 10}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Jun 21 2013, after Johannes W. Meijer *) CROSSREFS Left hand column sequences 2*A142964, 4*A142965, 8*A142966, 16*A142968. Row sums A142967. From Johannes W. Meijer, Feb 20 2009: (Start) A156919 and this sequence can be mapped onto A156920. Cf. A156921, A156925, A156927, A156933. Right hand column sequences 2^n*A000340, 2^n*A156922, 2^n*A156923, 2^n*A156924. (End) Cf. A142961, A142962. Sequence in context: A011268 A225911 A163235 * A099755 A202483 A110682 Adjacent sequences:  A142960 A142961 A142962 * A142964 A142965 A142966 KEYWORD nonn,easy,tabl AUTHOR Wolfdieter Lang, Sep 15 2008 EXTENSIONS Minor edits by Johannes W. Meijer, Sep 28 2011 A more precise name by Peter Luschny, Jun 18 2017 Name reformulated with offset corrected, edited by Wolfdieter Lang, Aug 23 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 11:19 EDT 2019. Contains 328345 sequences. (Running on oeis4.)