login
A142962
Scaled convolution of (n^3)*A000984(n) with A000984(n).
2
4, 26, 81, 184, 350, 594, 931, 1376, 1944, 2650, 3509, 4536, 5746, 7154, 8775, 10624, 12716, 15066, 17689, 20600, 23814, 27346, 31211, 35424, 40000, 44954, 50301, 56056, 62234, 68850, 75919, 83456, 91476, 99994, 109025, 118584, 128686, 139346, 150579
OFFSET
1,1
COMMENTS
S(3,n) := Sum_{j=0..n} j^3*binomial(2*j,j)*binomial(2*(n-j),n-j).
a(n) = 2^3*S(3,n)/4^n, n >= 1.
O.g.f. for S(3,n) is G(k=3,x). See triangle A142963 for the general G(k,x) formula.
The author was led to compute such sums by a question asked by M. Greiter, Jun 27 2008.
LINKS
FORMULA
a(n) = n^2*(3+5*n)/2.
a(n) = (2^3)*S(3,n)/4^n with the convolution S(3,n) defined above.
G.f.: x*(4+10*x+x^2)/(1-x)^4. - Joerg Arndt, Jul 02 2023
MATHEMATICA
Rest@ CoefficientList[Series[x (4 + 10 x + x^2)/(1 - x)^4, {x, 0, 39}], x] (* Michael De Vlieger, Jul 02 2023 *)
CROSSREFS
Cf. A142961 triangle: row k=3: [3, 5], with the row polynomial 3+5*n.
Cf. A049451 (scaled k=2 case).
Sequence in context: A014450 A283573 A200058 * A247194 A102198 A100207
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 15 2008
STATUS
approved