This site is supported by donations to The OEIS Foundation.

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A142962 Scaled convolution of (n^3)*A000984(n) with A000984(n). A000984(n) = binomial(2*n,n) (central binomial coefficients). 1
 4, 26, 81, 184, 350, 594, 931, 1376, 1944, 2650, 3509, 4536, 5746, 7154, 8775, 10624, 12716, 15066, 17689, 20600, 23814, 27346, 31211, 35424, 40000, 44954, 50301, 56056, 62234, 68850, 75919, 83456, 91476, 99994, 109025, 118584, 128686, 139346, 150579 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS S(3,n):= sum(p^3*binomial(2*p,p)*binomial(2*(n-p),n-p),p=0..n). a(n)=2^3*S(3,n)/4^n, n>=1. O.g.f. for S(3,n) is G(k=3,x). See triangle A142963 for the general G(k,x) formula. The author was led to compute such sums by a question asked by M. Greiter, June 27, 2008. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 FORMULA a(n)=n^2*(3+5*n)/2. a(0):=0. a(n)=(2^3)*S(3,n)/4^n with the convolution S(3,n) defined above. O.g.f.: 2*x*(1+10*x+4*x^2)/(1-4*x)^4 (see triangle A142963 for the general G(k,x) formula). CROSSREFS A142962 triangle: row k=3: [3, 5], with the row polynomial 3+5*n. Sequence in context: A014450 A283573 A200058 * A247194 A102198 A100207 Adjacent sequences:  A142959 A142960 A142961 * A142963 A142964 A142965 KEYWORD nonn,easy AUTHOR Wolfdieter Lang Sep 15 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.