This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A142598 Antidiagonal triangle sequence of coefficient expansion of the general prime product polynomial: f(x,n) = (1 + t^2)/Product_{i=1..n} (1 - t^prime(i + 1)). 0
 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 0, 2, 1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 1, 1, 0, 1, 1, 0, 2, 1, 2, 2, 1, 1, 0, 1, 1, 0, 2, 1, 2, 2, 1, 0, 1, 0, 1, 1, 0, 2, 1, 2, 2, 2, 2, 1, 1, 0, 1, 1, 0, 2, 1, 2, 2, 2, 3, 2, 1, 1, 0, 1, 1, 0, 2, 1, 2, 2, 2, 3, 2, 2, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,27 COMMENTS Row sums are {1, 1, 2, 3, 3, 4, 6, 6, 8, 11, 11, 15, 18, 19, 25}. LINKS FORMULA f(x,n) = (1 + t^2)/Product_{i=1..n} (1 - t^prime(i + 1)); t(n,m) = expansion(f(x,n)); out_n,m(antidiagonal) = t(n-m+1,n). EXAMPLE {1}, {1, 0}, {1, 0, 1}, {1, 0, 1, 1}, {1, 0, 1, 1, 0}, {1, 0, 1, 1, 0, 1}, {1, 0, 1, 1, 0, 2, 1}, {1, 0, 1, 1, 0, 2, 1, 0}, {1, 0, 1, 1, 0, 2, 1, 1, 1}, {1, 0, 1, 1, 0, 2, 1, 2, 2, 1}, {1, 0, 1, 1, 0, 2, 1, 2, 2, 1, 0}, {1, 0, 1, 1, 0, 2, 1, 2, 2, 2, 2, 1}, {1, 0, 1, 1, 0, 2, 1, 2, 2, 2, 3, 2, 1}, {1, 0, 1, 1, 0, 2, 1, 2, 2, 2, 3, 2, 2, 0}, {1, 0, 1, 1, 0, 2, 1, 2, 2, 2, 3, 3, 4, 2, 1} MATHEMATICA Clear[f, b, a] f[t_, n_] := (1 + t^2)/Product[1 - t^Prime[i + 1], {i, 1, n}]; a = Table[Table[SeriesCoefficient[Series[f[t, m], {t, 0, 30}], n], {n, 0, 30}], {m, 1, 31}]; b = Table[Table[a[[n - m + 1]][[m]], {m, 1, n }], {n, 1, 15}] ; Flatten[b] CROSSREFS Sequence in context: A263657 A261769 A005590 * A274372 A037800 A144411 Adjacent sequences:  A142595 A142596 A142597 * A142599 A142600 A142601 KEYWORD nonn,uned AUTHOR Roger L. Bagula and Gary W. Adamson, Sep 22 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.