|
|
A142596
|
|
Symmetrical recursion of the Pascal triangle type ( MacMahon like): t(n,k)=t(n - 1, k - 1) + 3* t(n - 1, k) + 2*t(n - 1, k - 1).
|
|
0
|
|
|
1, 1, 1, 1, 6, 1, 1, 21, 21, 1, 1, 66, 126, 66, 1, 1, 201, 576, 576, 201, 1, 1, 606, 2331, 3456, 2331, 606, 1, 1, 1821, 8811, 17361, 17361, 8811, 1821, 1, 1, 5466, 31896, 78516, 104166, 78516, 31896, 5466, 1, 1, 16401, 112086, 331236, 548046, 548046, 331236
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
Row sums are:
{1, 2, 8, 44, 260, 1556, 9332, 55988, 335924, 2015540}.
This triangle sequence is internally lower than the MacMahon type A060187.
|
|
LINKS
|
Table of n, a(n) for n=1..52.
|
|
FORMULA
|
t(n,k)=t(n - 1, k - 1) + 3* t(n - 1, k) + 2*t(n - 1, k - 1).
|
|
EXAMPLE
|
{1},
{1, 1},
{1, 6, 1},
{1, 21, 21, 1},
{1, 66, 126, 66, 1},
{1, 201, 576, 576, 201, 1},
{1, 606, 2331, 3456, 2331, 606, 1},
{1, 1821, 8811, 17361, 17361, 8811, 1821, 1},
{1, 5466, 31896, 78516, 104166, 78516, 31896, 5466, 1},
{1, 16401, 112086, 331236, 548046, 548046, 331236, 112086, 16401, 1}
|
|
MATHEMATICA
|
A[n_, 1] := 1 A[n_, n_] := 1 A[n_, k_] := A[n - 1, k - 1] + 3* A[n - 1, k] + 2*A[n - 1, k - 1]; a = Table[A[n, k], {n, 10}, {k, n}]; Flatten[a]
|
|
CROSSREFS
|
Cf. A008292, A119258, A060187.
Sequence in context: A296827 A056941 A157638 * A176063 A155467 A152936
Adjacent sequences: A142593 A142594 A142595 * A142597 A142598 A142599
|
|
KEYWORD
|
nonn,uned
|
|
AUTHOR
|
Roger L. Bagula, Sep 22 2008
|
|
STATUS
|
approved
|
|
|
|