login
A142349
Primes of the form n/4*(c(n)-r(n)), where c(n)=n-th composite and r(n)=n-th nonprime.
0
2, 3, 5, 7, 5, 5, 7, 11, 17, 23, 37, 41, 43, 29, 31, 61, 41, 43, 67, 71, 73, 79, 53, 83, 89, 97, 67, 107, 109, 113, 131, 67, 137, 139, 149, 151, 101, 163, 109, 167, 113, 173, 181, 191, 193, 197, 199, 223, 229, 233, 157, 239, 241, 163, 257, 173, 263, 181, 281, 193, 293
OFFSET
1,1
EXAMPLE
If n=24, then 24/4*(c(24)-r(24))=6/(36-34)=2=a(1).
If n=40, then 40/4*(c(40)-r(40))=10/(48-44)=5=a(2).
If n=42, then 42/4*(c(42)-r(42))=42/4*(48-45)=7=a(3).
If n=60, then 60/4*(c(60)-r(60))=15/(84-81)=5=a(4).
If n=80, then 80/4*(c(80)-r(80))=20/(110-106)=5=a(5), etc.
MAPLE
A141468 := proc(n) option remember ; if n = 1 then 0; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a) ; fi; od: fi; end: A002808 := proc(n) option remember ; A141468(n+2) ; end: for n from 1 to 3000 do p := n/(A002808(n)-A141468(n))/4 ; if type(p, 'integer') then if isprime(p) then printf("%d, ", p) ; fi; fi; od: # R. J. Mathar, Jan 23 2009
CROSSREFS
Sequence in context: A245711 A246258 A126048 * A234316 A284630 A345872
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected and extended by R. J. Mathar, Jan 23 2009
STATUS
approved