The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141907 a(n) = sum(mod(sum((-1)^j*binomial(n + 1, j)*(k + 1 - j)^n, j=0..k+1), 10)*10^k, k=0..n-1). 0
 1, 11, 141, 1111, 16661, 172271, 1016101, 17399371, 128404821, 1302442031, 16784848761, 131546645131, 1860584850681, 19465322356491, 129218121812921, 1955997557995591, 14000280008200041, 154002080080200451 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A palindromic number sequence based on the Eulerian numbers modulo ten and base ten. REFERENCES Weisstein, Eric W. "Palindromic Number." http://mathworld.wolfram.com/PalindromicNumber.html LINKS FORMULA a(n)=Sum[Mod[Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}], 10]*10^k, {k, 0, n - 1}]. MATHEMATICA Table[Sum[Mod[Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}], 10]*10^k, {k, 0, n - 1}], {n, 1, 30}] CROSSREFS Sequence in context: A024142 A024296 A324084 * A205084 A083078 A048965 Adjacent sequences:  A141904 A141905 A141906 * A141908 A141909 A141910 KEYWORD nonn,base AUTHOR Roger L. Bagula and Gary W. Adamson, Sep 14 2008 EXTENSIONS Edited by Michel Marcus, Jan 30 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 15:29 EDT 2020. Contains 337383 sequences. (Running on oeis4.)