login
A141905
Triangle read by rows, T(n, k) = binomial(n, k)*A052509(n, k) for 0 <= k <= n.
1
1, 1, 1, 1, 4, 1, 1, 9, 6, 1, 1, 16, 24, 8, 1, 1, 25, 70, 40, 10, 1, 1, 36, 165, 160, 60, 12, 1, 1, 49, 336, 525, 280, 84, 14, 1, 1, 64, 616, 1456, 1120, 448, 112, 16, 1, 1, 81, 1044, 3528, 3906, 2016, 672, 144, 18, 1, 1, 100, 1665, 7680, 11970, 8064, 3360, 960, 180, 20, 1
OFFSET
0,5
COMMENTS
Original definition: A skew trinomial summed triangular sequence of coefficients: T(n, k) = Sum_{j=0..k} n!/((n - k - j)!*j!*k!).
It is obscure how the above formula is used for the region where the sum reaches k > n-m, which needs a definition of the factorials at negative integer argument. If we trust the author's Mma implementation, Mma throws in some magic renormalization to cover these arguments. If we define, properly, t(n, k) = Sum_{j=0..n-k) n!/((n-k-j)!*j!*k!), then we recover just A038207. - R. J. Mathar, Feb 07 2014
Let p(n, k, j) = n!/((n-k-j)!*j!*k!), for j<=n-k and 0<= k <=n and p(n, k, j) = 0, for j > n-k and 0<= k <=n. It seems that T(n, k) coincides with Sum_{j=0..k} p(n, k, j). - Luis Manuel Rivera Martínez, Mar 04 2014
FORMULA
T(n, k) = Sum_{j=0..k} n!/((n - k - j)!*j!*k!).
G.f.: (2*x)/((3*x - 1)*sqrt(-4*x^2*y + x^2 - 2*x + 1) - 4*x^2*y + x^2 - 2*x +1). - Vladimir Kruchinin, Oct 05 2020
T(n, k) = binomial(n, k)*hypergeom([-k, -n + k], [-k], -1). - Peter Luschny, Nov 28 2021
EXAMPLE
Triangle begins as:
[0] 1;
[1] 1, 1;
[2] 1, 4, 1;
[3] 1, 9, 6, 1;
[4] 1, 16, 24, 8, 1;
[5] 1, 25, 70, 40, 10, 1;
[6] 1, 36, 165, 160, 60, 12, 1;
[7] 1, 49, 336, 525, 280, 84, 14, 1;
[8] 1, 64, 616, 1456, 1120, 448, 112, 16, 1;
[9] 1, 81, 1044, 3528, 3906, 2016, 672, 144, 18, 1;
MAPLE
A052509 := proc(n, k) option remember: if k = 0 or k = n then 1 else A052509(n-1, k) + A052509(n-2, k-1) fi end: T := (n, k) -> binomial(n, k)*A052509(n, k): seq(seq(T(n, k), k=0..n), n=0..10); # Peter Luschny, Nov 26 2021
MATHEMATICA
T[n_, k_]:= Sum[n!/((n-k-j)!*j!*k!), {j, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten
PROG
(Magma) [Binomial(n, k)*(&+[Binomial(n-k, j): j in [0..k]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 29 2021
(Sage) flatten([[binomial(n, k)*sum(binomial(n-k, j) for j in (0..k)) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Mar 29 2021
CROSSREFS
Row sums are A027914.
Sequence in context: A244811 A183153 A208513 * A114188 A110511 A082950
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Edited by G. C. Greubel, Mar 29 2021
New name by Peter Luschny, Nov 26 2021
STATUS
approved