%I #2 Mar 30 2012 18:37:11
%S 1,1,5,36,336,3863,52944,844777,15411547,316888806,7258887646,
%T 183464090374,5074934980977,152584140132667,4956824851572271,
%U 173086933804868142,6467223731119047195,257524741272166890188
%N Column 4 of triangle A141760.
%F G.f.: 1/(1-x) = Sum_{n>=0} a(n) * x^n/(1+x)^{(n+3)*(n+4)/2 - 6}.
%F a(n) = 1 - Sum_{j=0..n-1} a(j) * (-1)^(n-j) * C((j+3)(j+4)/2 + n-j-7, n-j) for n>0, with a(0)=1.
%o (PARI) {a(n)=if(n==0,1,1 - sum(j=0,n-1,a(j)*(-1)^(n-j)*binomial((j+3)*(j+4)/2-6+n-j-1,n-j)))}
%Y Cf. A141760, A141761, A141762, A141763.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Jul 18 2008