login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141759 a(n) = 16n^2 + 32n + 15. 6
15, 63, 143, 255, 399, 575, 783, 1023, 1295, 1599, 1935, 2303, 2703, 3135, 3599, 4095, 4623, 5183, 5775, 6399, 7055, 7743, 8463, 9215, 9999, 10815, 11663, 12543, 13455, 14399, 15375, 16383, 17423, 18495, 19599, 20735, 21903, 23103, 24335, 25599 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Via the partial fraction decomposition 1/((4n+3)*(4n+5)) = (1/2) *(1/(4n+3) -1/(4n+5)) we find 2*Sum_{n>=0} (-1)^n/a(n) = 2*Sum_{n>=0} (-1)^n/( (4*n+3)*(4*n+5) ) = 1/3 -1/5 -1/7 +1/9 +1/11 -1/13 -1/15 +1/17 +1/19 -- ++ ... = (1/1 + 1/3 -1/5 -1/7 +1/9 +1/11 -1/13 -1/15 +1/17 +1/19 -- ++ ..)-1 = Sum_{n>=0} (-1)^n/A016813(n) + Sum_{n>=0} (-1)^n/A004767(n) -1 = -1 + Sum_{n>=0} b(n)/n^1 where b(n) = 1, 0, 1, 0, -1, 0, -1, 0 is a sequence with period length 8, one of the Dirichlet L-series modulo 8. The alternating sum becomes -1 +L(m=8,r=4,s=1) = Pi*sqrt(2)/4-1 = A093954 - 1.

Pi = 4 - 8*Sum(1/a(n)) noted by Bronstein-Semendjajew for the variant a(n) = (4n-1)*(4n+1) starting at n=1. - Frank Ellermann, Sep 18 2011

The identity (16*n^2-1)^2 - (64*n^2-8)*(2*n)^2 = 1 can be written as a(n)^2 - A158487(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Feb 09 2012

Sequence found by reading the line from 15, in the direction 15, 63,... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012

Essentially the least common multiple of 4*n+1 and 4*n-1. - Colin Barker, Feb 11 2017

REFERENCES

Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th german ed. 1965, ch. 4.1.8.

Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), pp. 980-981.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: (15+18*x-x^2)/(1-x)^3.

E.g.f.: (15+48*x+16*x^2)*exp(x).

a(n) = a(-n-2) = A016802(n+1) - 1. - Bruno Berselli, Sep 22 2011

MAPLE

A141759:=n->16*n^2 + 32*n + 15: seq(A141759(n), n=0..60);

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {15, 63, 143}, 50] (* Vincenzo Librandi, Feb 09 2012 *)

PROG

(MAGMA) [(4*n+3)*(4*n+5): n in [0..50]]; // Vincenzo Librandi, Sep 22 2011

(PARI) a(n)=n*(n+2)<<4+15 \\ Charles R Greathouse IV, Oct 27 2011

CROSSREFS

Cf. A005843, A074377, A093954, A133818, A158487.

Sequence in context: A065915 A062965 A157968 * A104473 A135972 A138104

Adjacent sequences:  A141756 A141757 A141758 * A141760 A141761 A141762

KEYWORD

nonn,easy

AUTHOR

Miklos Kristof, Sep 15 2008

EXTENSIONS

Formula indices corrected by R. J. Mathar, Jul 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 15:13 EST 2017. Contains 295089 sequences.