login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141705 a(n) = least Carmichael number of the form prime(n)*prime(n')*prime(n") with n < n' < n", or 0 if no such number exists. 2
0, 561, 1105, 1729, 0, 29341, 162401, 334153, 1615681, 3581761, 399001, 294409, 252601, 1152271, 104569501, 2508013, 178837201, 6189121, 10267951, 10024561, 14469841, 4461725581, 985052881, 19384289, 23382529, 3828001, 90698401 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Primes for which there are no such numbers (i.e. prime(n) such that a(n)=0) are given in A051663. Sequence A135720 is similar, but without restriction to 3-factor Carmichael numbers.

LINKS

Table of n, a(n) for n=1..27.

OEIS index entries for Carmichael numbers

EXAMPLE

a(1)=0 since there is no Carmichael number having prime(1)=2 as factor.

a(2)=561 since this is the smallest Carmichael number of the form pqr with prime r>q>p=prime(2)=3.

a(5)=0 since there is no Carmichael number of the form pqr with prime r>q>p=prime(5)=11.

PROG

(PARI) A141705(n) = { /* based on code by J.Brennen (jb AT brennen.net) */ local( V=[], B, p=prime(n), q, r); for( A=1, p-1, B=ceil((p^2+1)/A); while( 1, r=(p*B-p+A*B-B)/(A*B-p*p); q=(A*r-A+1)/p; q<=p && break; denominator(q)==1 && denominator(r)==1 && r>q && isprime(q) && isprime(r) && (p*q*r)%(p-1)==1 && V=concat(V, [p*q*r]); B++ )); if( V, vecmin( V )); }

CROSSREFS

Cf. A002997, A051663, A135720, A141702-A141706.

Sequence in context: A224695 A137198 A194231 * A135721 A253595 A047713

Adjacent sequences:  A141702 A141703 A141704 * A141706 A141707 A141708

KEYWORD

nonn

AUTHOR

M. F. Hasler, Jul 03 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 21:40 EST 2016. Contains 278771 sequences.