This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141702 a(n) = number of Carmichael numbers of the form prime(n)*prime(n')*prime(n") with n > n' > n". 5
 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 3, 1, 2, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS The formula and PARI code uses Korselt's criterion. This sequence is a somewhat trivial variant of the more interesting sequence giving the number of Carmichael numbers of the form prime(n)*prime(n')*prime(n") with n < n' < n" (known to be finite for given n). LINKS FORMULA a(n) = # { pqr | p=prime(n) > q=prime(n') > r=prime(n") ; p-1 | pqr-1 ; q-1 | pqr-1 ; r-1 | pqr-1 } EXAMPLE a(7)=2 is the first nonzero term since 561 = 3*11*17 and 1105 = 5*13*17 are the two smallest Carmichael numbers and there's no other Carmichael number having prime(7)=17 as largest factor. PROG (PARI) A141702(n) = { local( p=prime(n), c=0 ); forprime( q=5, p-2, forprime( r=3, q-2, (p*q*r-1)%(p-1)==0 && (p*q*r-1)%(q-1)==0 && (p*q*r-1)%(r-1)==0 && c++ )); c } CROSSREFS Cf. A002997 and references therein ; A087788 ; A141703 ff. Sequence in context: A257265 A045706 A045634 * A259896 A113313 A074871 Adjacent sequences:  A141699 A141700 A141701 * A141703 A141704 A141705 KEYWORD easy,nonn AUTHOR M. F. Hasler, Jun 30 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 19:10 EDT 2019. Contains 324198 sequences. (Running on oeis4.)