OFFSET
0,5
COMMENTS
Row sums are 1, 2, 8, 40, 224, 1408, 10016, 80512, 725504, 7257088, ... = 2*(n+1)! - 2^n.
LINKS
G. C. Greubel, Rows n = 0..100 of triangle, flattened
EXAMPLE
Triangle begins
1;
1, 1;
1, 6, 1;
1, 19, 19, 1;
1, 48, 126, 48, 1;
1, 109, 594, 594, 109, 1;
1, 234, 2367, 4812, 2367, 234, 1;
1, 487, 8565, 31203, 31203, 8565, 487, 1;
1, 996, 29188, 176412, 312310, 176412, 29188, 996, 1;
1, 2017, 95644, 910300, 2620582, 2620582, 910300, 95644, 2017, 1;
MAPLE
MATHEMATICA
Table[Table[(2*Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}] - Binomial[n - 1, k]), {k, 0, n - 1}], {n, 1, 10}]; Flatten[%]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Sep 09 2008
STATUS
approved