login
A141650
Primes of the form n/(2*(p(n+1)-p(n))), where p(n)=n-th prime.
0
5, 7, 3, 13, 7, 11, 29, 17, 37, 7, 5, 53, 59, 67, 19, 13, 41, 83, 31, 107, 131, 19, 47, 71, 29, 157, 193, 41, 19, 241, 61, 251, 137, 47, 97, 311, 23, 331, 67, 397, 137, 211, 73, 149, 229, 157, 79, 41, 251, 503, 43, 173, 263, 269, 619, 311, 659, 691, 353, 739, 199, 421, 281, 853
OFFSET
1,1
COMMENTS
Entries may be repeated and are shown in order of increasing generator n.
EXAMPLE
n=20: 20/(2*(p(20+1)-p(20)))=20/(2*(73-71))=5=a(1).
n=28: 28/(2*(p(28+1)-p(28)))=28/(2*(109-107))=7=a(2).
n=36: 36/(2*(p(36+1)-p(36)))=36/(2*(157-151))=3=a(3).
n=52: 52/(2*(p(52+1)-p(52)))=52/(2*(241-239))=13=a(4).
n=84: 84/(2*(p(84+1)-p(84)))=84/(2*(439-433))=7=a(5).
n=88: 88/(2*(p(88+1)-p(88)))=88/(2*(461-457))=11=a(6).
CROSSREFS
Cf. A000040.
Sequence in context: A356360 A076567 A146535 * A058091 A376432 A258162
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected and extended by R. J. Mathar, Sep 26 2008
STATUS
approved