login
A141593
Numbers k such that k, k + 2310, k + 2 * 2310, k + 3 * 2310, and k + 4 * 2310 are all averages of twin primes.
0
1932, 14592, 122598, 377370, 2137548, 16134048, 18132978, 34083432, 43175478, 46683060, 64938702, 126380340, 145790430, 163303200, 326061120, 328413078, 385629198, 413149992, 483737628, 526728990, 659595048, 675836598, 871231200, 919360920, 931176330, 938024028, 996849108
OFFSET
1,1
EXAMPLE
1932 is a term since 1932, 1932 + 2310 = 4242, 1932 + 2 * 2310 = 6552, 1932 + 3 * 2310 = 8862, and 1932 + 4 * 2310 = 11172 are averages of twin primes.
MATHEMATICA
q=2310; lst={}; Do[If[PrimeQ[n-1] &&PrimeQ[n+1] &&PrimeQ[n+q*1-1] &&PrimeQ[n+q*1+1] &&PrimeQ[n+q*2-1] &&PrimeQ[n+q*2+1] &&PrimeQ[n+q*3-1] &&PrimeQ[n+q*3+1] &&PrimeQ[n+q*4-1] &&PrimeQ[n+q*4+1], Print[n]; AppendTo[lst, n]], {n, 10^8}]; lst
Select[Range[4*10^5], And @@ PrimeQ[# + Plus @@@ Tuples[{{-1, 1}, 2310 * Range[0, 4]}]] &] (* Amiram Eldar, Dec 31 2019 *)
CROSSREFS
Cf. A014574.
Sequence in context: A162386 A283925 A166393 * A221015 A227491 A277943
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Amiram Eldar, Dec 31 2019
STATUS
approved