OFFSET
1,1
COMMENTS
Start from the prime number decomposition of n, that is the list 1, 2, 3, 2^2, 5, 2*3, 7, 2^3, 3^2, 2*5, 11, 2^2*3... Add 1 to all visible bases and exponents (visible in the sense that exponents are not written down if they equal 1), that is 1+1, 2+1, 3+1, (2+1)^(2+1), 5+1, (2+1)*(3+1), 7+1, (2+1)^(3+1), (3+1)^(2+1), (2+1)*(5+1), 11+1, (2+1)^(2+1)*(3+1)..). Evaluate this modified product to yield a(n).
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16384
MAPLE
A := proc(n) local a, p, e, q, ifs ; ifs := ifactors(n)[2] ; if n = 1 then RETURN(2) fi; a := 1; for p in ifs do q := op(1, p)+1 ; if op(2, p) > 1 then e := op(2, p)+1 ; else e := 1 ; fi; a := a*q^e ; od: RETURN(a) ; end: for n from 1 to 120 do printf("%d, ", A(n)) ; od: # R. J. Mathar, Aug 21 2008
MATHEMATICA
Array[Times @@ Apply[Times, FactorInteger[#] /. {{p_, e_} /; e > 1 :> (p + 1)^(e + 1), {k_, 1} :> k + 1}] &, 63] (* Michael De Vlieger, Nov 23 2017 *)
PROG
(PARI) A141565(n) = { if(1==n, return(2)); my(f=factor(n)); for(i=1, omega(n), f[i, 1] += 1; if(f[i, 2]>1, f[i, 2] += 1)); factorback(f); }; \\ Antti Karttunen, Nov 23 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Juri-Stepan Gerasimov, Aug 14 2008
EXTENSIONS
Edited and corrected by R. J. Mathar, Aug 21 2008
STATUS
approved