OFFSET
1,1
COMMENTS
a(7) > 10^12. - Donovan Johnson, Dec 08 2011
a(7) > 10^13. - Giovanni Resta, Mar 29 2013
a(8) > 10^18. - Hiroaki Yamanouchi, Aug 23 2018
Any term x of this sequence can be combined with any term y of A141550 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016
Every number of the form 2^(j-1)*(2^j - 15), where 2^j - 15 is prime, is a term. - Jon E. Schoenfield, Jun 02 2019
FORMULA
{k: A033880(k) = 14}. - R. J. Mathar, Jun 06 2024
EXAMPLE
a(1) = 272, since sigma(272) - 2*272 = 558 - 544 = 14. - Timothy L. Tiffin, Sep 13 2016
MATHEMATICA
lst={}; Do[If[n==Plus@@Divisors[n]-n-14, AppendTo[lst, n]], {n, 10^4}]; Print[lst];
lst = {}; Do[ If[2 n + 14 == DivisorSigma[1, n], AppendTo[lst, n]], {n, 2 10^8, 2}]; lst (* Robert G. Wilson v, Aug 17 2008 *)
PROG
(PARI) isok(n) = sigma(n) - 2*n == 14; \\ Michel Marcus, Mar 20 2015
(Magma) [n: n in [1..10^8] | SumOfDivisors(n)- 2*n eq 14]; // Vincenzo Librandi, Mar 20 2015
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Vladimir Joseph Stephan Orlovsky, Aug 16 2008
EXTENSIONS
a(5)-a(6) from Donovan Johnson, Dec 21 2008
a(7) from Hiroaki Yamanouchi, Aug 23 2018
STATUS
approved