login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141543 Triangle T(n,k) read by brows: T(n,2k)=k, T(n,2k+1) = k-n, for 0<=k<=n. 1

%I

%S 0,0,-1,0,-2,1,0,-3,1,-2,0,-4,1,-3,2,0,-5,1,-4,2,-3,0,-6,1,-5,2,-4,3,

%T 0,-7,1,-6,2,-5,3,-4,0,-8,1,-7,2,-6,3,-5,4,0,-9,1,-8,2,-7,3,-6,4,-5,0,

%U -10,1,-9,2,-8,3,-7,4,-6,5

%N Triangle T(n,k) read by brows: T(n,2k)=k, T(n,2k+1) = k-n, for 0<=k<=n.

%C In each row, two bisections count up.

%C Mentioned in A124072. [How/where? R. J. Mathar, Jul 07 2011]

%e 0;

%e 0, -1;

%e 0, -2, 1;

%e 0, -3, 1, -2;

%e 0, -4, 1, -3, 2;

%e 0, -5, 1, -4, 2, -3;

%e 0, -6, 1, -5, 2, -4, 3;

%p A141543 := proc(n,k) if type(k,'even') then k/2; else (k-1)/2-n ; end if; end proc:

%p seq(seq(A141543(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Jul 07 2011

%t Flatten[Table[If[EvenQ[k],k/2,(k-1)/2-n],{n,0,10},{k,0,n}]] (* _Harvey P. Dale_, Sep 24 2013 *)

%K sign,easy,tabl

%O 0,5

%A _Paul Curtz_, Aug 16 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 1 07:40 EDT 2014. Contains 246288 sequences.