This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141536 Orders, sorted, of embeddable Wythoffians in dimension 4. 0


%S 5,8,16,10,30,64,120,192,384,1152,14400

%N Orders, sorted, of embeddable Wythoffians in dimension 4.

%C Sorted from Deza et al., Table 2, p.5. Abstract: The Wythoff construction takes a d-dimensional polytope P, a subset S of {0, . . ., d} and returns another d-dimensional polytope P(S). If P is a regular polytope, then P(S) is vertex-transitive. This construction builds a large part of the Archimedean polytopes and tilings in dimension 3 and 4. We want to determine, which of those Wythoffians P(S) with regular P have their skeleton or dual skeleton isometrically embeddable into the hypercubes H_m and half-cubes (1/2)H_m. We find six infinite series, which, we conjecture, cover all cases for dimension d > 5 and some sporadic cases in dimension 3 and 4 (see Tables 1 and 2).

%C Three out of those six infinite series are explained by a general result about the embedding of Wythoff construction for Coxeter groups. In the last section, we consider the Euclidean case; also, zonotopality of embeddable P(S) are addressed throughout the text.

%H Michel Deza, Mathieu Dutour and Sergey Shpectorov, <a href="http://arxiv.org/abs/math/0407527">Hypercube embedding of Wythoffians</a> arXiv:math/0407527 v5, Aug 11, 2008.

%K fini,full,nonn

%O 1,1

%A _Jonathan Vos Post_, Aug 12 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 24 22:57 EST 2015. Contains 264374 sequences.