login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141531 Inverse binomial transform of A001651. 3
1, 1, 1, -2, 4, -8, 16, -32, 64, -128, 256, -512, 1024, -2048, 4096, -8192, 16384, -32768, 65536, -131072, 262144, -524288, 1048576, -2097152, 4194304, -8388608, 16777216, -33554432, 67108864, -134217728, 268435456, -536870912, 1073741824, -2147483648 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..33.

Index entries for linear recurrences with constant coefficients, signature (-2).

FORMULA

a(n) = A123344(n+1), n>0.

a(n) = (-2)^n/4 = (-1)^n*A000079(n-2), n>1.

O.g.f.: (1+3x+3x^2)/(1+2x). - R. J. Mathar, Aug 27 2008

a(0)=1, a(1)=1, a(2)=1, a(n) = -2*a(n-1). [Harvey P. Dale, May 04 2012]

G.f.: x+1/Q(0)  where Q(k) = 1 + x*(k+1)/(1 - 1/(1 - (k+1)/Q(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 23 2012

G.f.: 1+x/U(0)  where U(k)=  1 - x*(k+4) + x*(k+3)/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 11 2012

MATHEMATICA

CoefficientList[Series[(1+3x+3x^2)/(1+2x), {x, 0, 40}], x] (* or *) Join[ {1, 1}, NestList[-2#&, 1, 38]] (* Harvey P. Dale, May 04 2012 *)

Join[{1, 1}, LinearRecurrence[{-2}, {1}, 32]] (* Ray Chandler, Aug 12 2015 *)

CROSSREFS

Sequence in context: A034008 A123344 * A166444 A084633 A000079 A120617

Adjacent sequences:  A141528 A141529 A141530 * A141532 A141533 A141534

KEYWORD

sign

AUTHOR

Paul Curtz, Aug 12 2008

EXTENSIONS

Edited and extended by R. J. Mathar, Aug 28 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 05:25 EST 2017. Contains 294853 sequences.