login
A141455
Irregular triangle showing the set of all possible values of primes modulo n in row n.
1
0, 1, 0, 1, 2, 1, 2, 3, 0, 1, 2, 3, 4, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5, 6, 1, 2, 3, 5, 7, 1, 2, 3, 4, 5, 7, 8, 1, 2, 3, 5, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 5, 7, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 5, 7, 9, 11, 13, 1, 2, 3, 4, 5, 7, 8, 11, 13, 14, 1, 2, 3, 5, 7, 9, 11, 13, 15
OFFSET
2,5
LINKS
Michael De Vlieger, Table of n, a(n) for n = 2..10209 (rows n = 2..180, flattened)
FORMULA
Row n = A027748(n) U A038566(n), writing n as 0 iff n is prime. - Michael De Vlieger, Apr 18 2022
EXAMPLE
Table begins:0, 1;
0, 1, 2;
1, 2, 3;
0, 1, 2, 3, 4;
1, 2, 3, 5;
0, 1, 2, 3, 4, 5, 6;
1, 2, 3, 5, 7;
1, 2, 3, 4, 5, 7, 8;
1, 2, 3, 5, 7, 9;
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
1, 2, 3, 5, 7, 11;
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12;
1, 2, 3, 5, 7, 9, 11, 13;
1, 2, 3, 4, 5, 7, 8, 11, 13, 14;
1, 2, 3, 5, 7, 9, 11, 13, 15;
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
1, 2, 3, 5, 7, 11, 13, 17;
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18;
1, 2, 3, 5, 7, 9, 11, 13, 17, 19;
MATHEMATICA
Table[Union[FactorInteger[n][[All, 1]] /. n -> 0, Select[Range[n - 1], CoprimeQ[n, #] &]], {n, 2, 15}] (* Michael De Vlieger, Apr 18 2022 *)
CROSSREFS
Cf. A057859 (row lengths), A039701 (row n=3), A039704 (row n=6), A027748, A038566.
Sequence in context: A123590 A092872 A364880 * A292627 A113125 A088239
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved