login
A141446
A102055(n) mod 9.
1
1, 2, 1, 4, -4, 7, -5, 8, -5, 4, -7, 1, -5, 5, -2, 4, -1, 4, -5, 2, -8, 4, -4, 7, -5, 8, -5, 4, -7, 1, -5, 5, -2, 4, -1, 4, -5, 2, -8, 4, -4, 7, -5, 8, -5, 4, -7, 1, -5, 5, -2, 4, -1, 4, -5, 2, -8, 4, -4, 7, -5, 8, -5, 4, -7, 1, -5, 5, -2, 4, -1, 4, -5, 2, -8, 4, -4, 7, -5, 8, -5, 4, -7, 1, -5, 5
OFFSET
0,2
COMMENTS
We compute the positive remainder modulo 9 and subtract 9 if A102055(n) is negative.
Appears to be periodic with period length 18 after the transitional first 3 elements. (This would imply only the same 6 digits appear as found in A141425.)
FORMULA
a(3n) + a(3n+1) + a(3n+2) = 4, 7, -2, -2, -2, 5 ever same six digits?
MAPLE
A102055 := proc(n) local k; if n = 0 then 1; else 1-add(A001469(k), k=1..n) ; end if; end proc:
A141446 := proc(n) local a; a := A102055(n) ; if a > 0 then a mod 9; else (a mod 9)-9; end if; end proc; # R. J. Mathar, Jul 07 2011
CROSSREFS
Cf. A141430.
Sequence in context: A308034 A289918 A127480 * A339407 A077965 A077967
KEYWORD
sign
AUTHOR
Paul Curtz, Aug 07 2008
STATUS
approved