This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141435 a(1) = 1, a(2) = 2; a(n) = a(n-a(1)) + a(n-a(2)) + a(n-a(3)) + a(n-a(4)) + ... 1
 1, 2, 3, 6, 11, 20, 38, 71, 132, 247, 461, 861, 1609, 3005, 5613, 10485, 19584, 36581, 68330, 127632, 238404, 445314, 831798, 1553712, 2902170, 5420945, 10125754, 18913838, 35329048, 65990929, 123264078, 230244265, 430071949, 803328933 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Thus we get a self-reference sequence that grows exponentially. a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-6) + a(n-11) + a(n-20) + ... A fibonacci-like sequence, even closer to the tribonacci numbers. Lim n-> oo log (a(n))/n converges. LINKS EXAMPLE a(6) = 20 because 20 = a(5) + a(4) + a(3) = 11 + 6 + 3 a(8) = 71 because 71 = a(7) + a(6) + a(5) + a(2) = 38 + 20 + 11 + 2 MAPLE A141435 := proc(n) option remember; local a, i; if n <= 3 then RETURN(n); else a :=0 ; for i from 1 to n-1 do if n-procname(i) < 1 then RETURN(a); else a := a+procname(n-procname(i)) ; fi; od; RETURN(a); fi; end: for n from 1 to 80 do printf("%d, ", A141435(n)) ; od: # R. J. Mathar, Nov 03 2008 CROSSREFS Cf. A058265, A008937, A001590, A000213, A000073, A096436, A102575, A111129. Sequence in context: A054177 A186546 A318910 * A096080 A143658 A005230 Adjacent sequences:  A141432 A141433 A141434 * A141436 A141437 A141438 KEYWORD easy,nonn AUTHOR Raes Tom (tommy1729(AT)hotmail.com), Aug 06 2008 EXTENSIONS More terms from R. J. Mathar, Nov 03 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 12:36 EDT 2018. Contains 316419 sequences. (Running on oeis4.)