login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141425 Period 6: repeat [1, 2, 4, 5, 7, 8]. 21
1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Terms of the simple continued fraction of 163/(4*sqrt(32370)-607). Decimal expansion of 17036/50023. [Paolo P. Lava, Aug 05 2009]

LINKS

Table of n, a(n) for n=1..105.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).

FORMULA

a(n) = (1/30)*{44*(n mod 6)+4*[(n+1) mod 6]-[(n+2) mod 6]+4*[(n+3) mod 6]-[(n+4) mod 6]+4*[(n+5) mod 6]}. [Paolo P. Lava, Aug 25 2008]

G.f.: x(1+2x+4x^2+5x^3+7x^4+8x^5)/((1-x)(1+x)(1-x+x^2)(1+x+x^2)). [R. J. Mathar, Nov 11 2008]

a(n) = 9/2-3*cos(Pi*(n-1)/3)/2 -3^(3/2)*sin(Pi*(n-1)/3)/2 -3*cos(2*Pi*(n-1)/3)/2 -3^(1/2)*sin(2*Pi*(n-1)/3)/2 +(-1)^n/2. - R. J. Mathar, Oct 08 2011

From Wesley Ivan Hurt, Apr 20 2015: (Start)

Recurrence: a(n) = a(n-6).

a(n) = (2+3*(5-n mod 3))*(n-1 mod 2)+(1+3*(1-n mod 3))*(n mod 2). (End)

MATHEMATICA

Select[ If[Mod[ #, 3] != 0, Mod[ #, 9], 0] & /@ Range@ 157, # > 0 &] (* Robert G. Wilson v, Aug 18 2008 *)

PROG

(PARI) a(n)=(1+(n%2)+3*((n-1)%6))/2 \\ Jaume Oliver Lafont, Aug 30 2009

CROSSREFS

Sequence in context: A081404 A081516 A255873 * A023962 A094562 A178344

Adjacent sequences:  A141422 A141423 A141424 * A141426 A141427 A141428

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Aug 06 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 3 04:49 EDT 2015. Contains 261304 sequences.