login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141425 Period 6: repeat 1, 2, 4, 5, 7, 8. 21
1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Terms of the simple continued fraction of 163/(4*sqrt(32370)-607). Decimal expansion of 17036/50023. [From Paolo P. Lava, Aug 05 2009]

LINKS

Table of n, a(n) for n=1..105.

Index to sequences with linear recurrences with constant coefficients, signature (0,0,0,0,0,1)

FORMULA

a(n)=(1/30)*{44*(n mod 6)+4*[(n+1) mod 6]-[(n+2) mod 6]+4*[(n+3) mod 6]-[(n+4) mod 6]+4*[(n+5) mod 6]} [From Paolo P. Lava, Aug 25 2008]

G.f.: x(1+2x+4x^2+5x^3+7x^4+8x^5)/((1-x)(1+x)(1-x+x^2)(1+x+x^2)). [From R. J. Mathar, Nov 11 2008]

a(n) = 9/2-3*cos(Pi*(n-1)/3)/2 -3^(3/2)*sin(Pi*(n-1)/3)/2 -3*cos(2*Pi*(n

-1)/3)/2 -3^(1/2)*sin(2*Pi*(n-1)/3)/2 +(-1)^n/2. - R. J. Mathar, Oct 08 2011

MATHEMATICA

Select[ If[Mod[ #, 3] != 0, Mod[ #, 9], 0] & /@ Range@ 157, # > 0 &] (* Robert G. Wilson v, Aug 18 2008 *)

PROG

(PARI) a(n)=(1+(n%2)+3*((n-1)%6))/2 [From Jaume Oliver Lafont, Aug 30 2009]

CROSSREFS

Sequence in context: A062249 A081404 A081516 * A023962 A094562 A178344

Adjacent sequences:  A141422 A141423 A141424 * A141426 A141427 A141428

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Aug 06 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 16:14 EDT 2014. Contains 246198 sequences.