OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).
FORMULA
G.f.: x*(1+2*x+4*x^2+5*x^3+7*x^4+8*x^5)/((1-x)*(1+x)*(1-x+x^2)*(1+x+x^2)). [R. J. Mathar, Nov 11 2008]
a(n) = 9/2 - 3*cos(Pi*(n-1)/3)/2 - 3^(3/2)*sin(Pi*(n-1)/3)/2 - 3*cos(2*Pi*(n-1)/3)/2 - 3^(1/2)*sin(2*Pi*(n-1)/3)/2 + (-1)^n/2. - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Apr 20 2015: (Start)
Recurrence: a(n) = a(n-6) for n>6.
a(n) = (2+3*(5-n mod 3))*(n-1 mod 2)+(1+3*(1-n mod 3))*(n mod 2). (End)
MAPLE
A141425:=n->[1, 2, 4, 5, 7, 8][(n mod 6)+1]: seq(A141425(n), n=0..100); # Wesley Ivan Hurt, Jun 28 2016
MATHEMATICA
Select[ If[Mod[ #, 3] != 0, Mod[ #, 9], 0] & /@ Range@ 157, # > 0 &] (* Robert G. Wilson v, Aug 18 2008 *)
PadRight[{}, 120, {1, 2, 4, 5, 7, 8}] (* Harvey P. Dale, May 13 2018 *)
PROG
(PARI) a(n)=(1+(n%2)+3*((n-1)%6))/2 \\ Jaume Oliver Lafont, Aug 30 2009
(Magma) &cat [[1, 2, 4, 5, 7, 8]^^30]; // Wesley Ivan Hurt, Jun 28 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Aug 06 2008
STATUS
approved