login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141417 (-1)^(n+1)*A091137(n)*a(0,n), where a(i,j) = int_{x=i..i+1} x*(x-1)*(x-2)*..*(x-j+1)/j! dx. 12
-1, 1, 1, 1, 19, 27, 863, 1375, 33953, 57281, 3250433, 5675265, 13695779093, 24466579093, 132282840127, 240208245823, 111956703448001, 205804074290625, 151711881512390095, 281550972898020815, 86560056264289860203, 161867055619224199787, 20953816286242674495191, 39427936010479474495191 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

This is row i=0 of an array defined as T(i,j) = (-1)^(i+j+1)*A091137(j)*a(i,j), columns j >= 0, which starts

-1,  1,   1,    1,   19,   27,  863

1, -3,   5,    1,   11,   11,  271

-1,  5, -23,    9,   19,   11,  191

1, -7,  53,  -55,  251,   27,  271

-1,  9, -95,  161,-1901,  475,  863

1,-11, 149, -351, 6731,-4277,19087

The first two rows are related via T(0,j) = A027760(j)*T(0,j-1)-T(1,j).

REFERENCES

P. Curtz, Integration .., note 12, C.C.S.A., Arcueil, 1969.

LINKS

Table of n, a(n) for n=0..23.

FORMULA

a(i,j) = a(i-1,j) + a(i-1,j-1), see reference page 33.

(q+1-j)*Sum_{j=0..q} a(i,j)*(-1)^(q-j) = binomial(i,q), see reference page 35.

a(n) = numerator(n*(n+1)*Sum_{k=1..n} ((-1)^(n-k)*stirling2(n+k,k)*binomial(2*n-1,n-k))/((n+k)*(n+k-1))), n>0, a(0)=-1. - Vladimir Kruchinin, Dec 12 2016

MAPLE

A091137 := proc(n) local a, i, p ; a := 1 ; for i from 1 do p := ithprime(i) ; if p > n+1 then break; fi; a := a*p^floor(n/(p-1)) ; od: a ; end proc:

A048994 := proc(n, k) combinat[stirling1](n, k) ; end proc:

a := proc(i, j) add(A048994(j, k)*x^k, k=0..j) ; int(%, x=i..i+1) ; %/j! ; end proc:

A141417 := proc(n) (-1)^(n+1)*A091137(n)*a(0, n) ; end proc:

seq(A141417(n), n=0..40) ; # R. J. Mathar, Nov 17 2010

MATHEMATICA

(* a7 = A091137 *) a7[n_] := a7[n] = Times @@ Select[ Divisors[n]+1, PrimeQ]*a7[n-1]; a7[0]=1; a[n_] := (-1)^(n+1) * a7[n] * Integrate[ (-1)^n*Pochhammer[-x, n], {x, 0, 1}]/n!; Table[a[n], {n, 0, 10}] (* Jean-Fran├žois Alcover, Aug 10 2012 *)

PROG

(Maxima)

a(n):=if n=0 then -1 else num(n*(n+1)*sum(((-1)^(n-k)*stirling2(n+k, k)*binomial(2*n-1, n-k))/((n+k)*(n+k-1)), k, 1, n)); /* Vladimir Kruchinin, Dec 12 2016 */

CROSSREFS

Cf. A141047, A140811, A140825.

Sequence in context: A146651 A146808 A147232 * A264834 A069529 A138335

Adjacent sequences:  A141414 A141415 A141416 * A141418 A141419 A141420

KEYWORD

sign

AUTHOR

Paul Curtz, Aug 05 2008

EXTENSIONS

Removed erroneous formula linking A091137 and A002196; added more terms and program - R. J. Mathar, Nov 17 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 23 02:46 EDT 2017. Contains 286909 sequences.