login
Numbers n where the sum of all of its divisors < sqrt(n) exceeds the sum of all the divisors of m < sqrt(m) for all m<n.
2

%I #12 Aug 07 2020 02:14:19

%S 1,2,6,12,20,24,30,40,48,60,72,90,120,168,180,240,336,360,420,480,504,

%T 600,630,672,720,840,1080,1260,1440,1680,2160,2520,3360,3780,3960,

%U 4200,4320,4620,5040,6720,7560,9240,10080,12600,13860,15120,18480,20160

%N Numbers n where the sum of all of its divisors < sqrt(n) exceeds the sum of all the divisors of m < sqrt(m) for all m<n.

%C Conjecture: 3600 is the largest number that belongs to exactly one of this sequence and A141037. - _J. Lowell_, Aug 05 2020

%H Amiram Eldar, <a href="/A141406/b141406.txt">Table of n, a(n) for n = 1..250</a>

%t lst = {}; s = -1; Do[t = Plus @@ Select[Divisors@n, # < Sqrt@n &]; If[t > s, AppendTo[lst, n]; s = t], {n, 100000}]; lst

%Y Cf. A141037.

%K nonn

%O 1,2

%A _Robert G. Wilson v_, Aug 03 2008