login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141402 General neo-combination of the overlapping type :k=2: t(n,m,k)=n^k + (2* m *(-m + n))^k. 0
0, 1, 1, 4, 8, 4, 9, 25, 25, 9, 16, 52, 80, 52, 16, 25, 89, 169, 169, 89, 25, 36, 136, 292, 360, 292, 136, 36, 49, 193, 449, 625, 625, 449, 193, 49, 64, 260, 640, 964, 1088, 964, 640, 260, 64, 81, 337, 865, 1377, 1681, 1681, 1377, 865, 337, 81, 100, 424, 1124, 1864 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Row sums are:

{0, 2, 16, 68, 216, 566, 1288, 2632, 4944, 8682, 14432};

A symmetrical one first and last version is:

Clear[T, n, m, a]

k = 2;

T[n_, m_] = If[n == m == 0, 1, Floor[(n^k + (2* m *(-m + n))^k)/n^k]];

a = Table[Table[T[n, m], {m, 0, n}], {n, 0, 10}]

LINKS

Table of n, a(n) for n=1..59.

FORMULA

k=2: t(n,m,k)=n^k + (2* m *(-m + n))^k.

EXAMPLE

{0},

{1, 1},

{4, 8, 4},

{9, 25, 25, 9},

{16, 52, 80, 52, 16},

{25, 89, 169, 169, 89, 25},

{36, 136, 292, 360, 292, 136, 36},

{49, 193, 449, 625, 625, 449, 193, 49},

{64, 260, 640, 964, 1088, 964, 640, 260, 64},

{81, 337, 865, 1377, 1681, 1681, 1377, 865, 337, 81},

{100, 424, 1124, 1864, 2404, 2600, 2404, 1864, 1124, 424, 100}

MATHEMATICA

Clear[T, n, m, a] k = 2; T[n_, m_] = n^k + (2* m *(-m + n))^k; a = Table[Table[T[n, m], {m, 0, n}], {n, 0, 10}]

CROSSREFS

Sequence in context: A165267 A092159 A322258 * A276619 A145900 A278676

Adjacent sequences:  A141399 A141400 A141401 * A141403 A141404 A141405

KEYWORD

nonn,uned,tabl

AUTHOR

Roger L. Bagula, Aug 03 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 06:22 EDT 2020. Contains 336442 sequences. (Running on oeis4.)