This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141398 The fifth power ( k=5) of the normalized neo-combinations: t(n,m,k)=Ceiling[((n - m)^k*(m + 1)^k - 2^(n - 1))/n^k]. 0
 0, 1, 1, 1, 5, 1, 1, 8, 8, 1, 1, 11, 19, 11, 1, 1, 13, 32, 32, 13, 1, 1, 15, 46, 63, 46, 15, 1, 1, 17, 58, 98, 98, 58, 17, 1, 1, 18, 70, 135, 166, 135, 70, 18, 1, 1, 19, 80, 173, 243, 243, 173, 80, 19, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Row sums are: {0, 2, 7, 18, 43, 92, 187, 348, 614, 1032}; This version is designed to "look like" a Pascal's triangle. The fractal picture is given by: Clear[T, n, m, a]; T[n_, m_] = Ceiling[((n - m)^5*(m + 1)^5 - 2^(n - 1))/n^5]; a = Table[Table[T[n, m], {m, 0, n - 1}], {n, 1, 100}]; f[n_] := Table[0, {i, 1, n}]; b = Table[Join[Mod[a[[n]], 2], f[Length[a] - n]], {n, 2, Length[a] - 1}]; ListDensityPlot[b, Mesh -> False] REFERENCES R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139. LINKS FORMULA k=5; t(n,m,k)=Ceiling[((n - m)^k*(m + 1)^k - 2^(n - 1))/n^k]. EXAMPLE {0}, {1, 1}, {1, 5, 1}, {1, 8, 8, 1}, {1, 11, 19, 11, 1}, {1, 13, 32, 32, 13, 1}, {1, 15, 46, 63, 46, 15, 1}, {1, 17, 58, 98, 98, 58, 17, 1}, {1, 18, 70, 135, 166, 135, 70, 18, 1}, {1, 19, 80, 173, 243, 243, 173, 80, 19, 1} MATHEMATICA Clear[T, n, m, a] k = 5; T[n_, m_] = Ceiling[((n - m)^k*(m + 1)^k - 2^(n - 1))/n^k]; a = Table[Table[T[n, m], {m, 0, n - 1}], {n, 1, 10}]; Flatten[a] CROSSREFS Cf. A003991. Sequence in context: A078181 A054110 A132048 * A058281 A046583 A046579 Adjacent sequences:  A141395 A141396 A141397 * A141399 A141400 A141401 KEYWORD nonn,uned,tabl AUTHOR Roger L. Bagula, Aug 03 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 07:46 EDT 2019. Contains 325136 sequences. (Running on oeis4.)