This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141376 Primes of the form -x^2+8*x*y+8*y^2 (as well as of the form 15*x^2+24*x*y+8*y^2). 4
 23, 47, 71, 167, 191, 239, 263, 311, 359, 383, 431, 479, 503, 599, 647, 719, 743, 839, 863, 887, 911, 983, 1031, 1103, 1151, 1223, 1319, 1367, 1439, 1487, 1511, 1559, 1583, 1607, 1823, 1847, 1871, 2039, 2063, 2087, 2111, 2207, 2351, 2399, 2423, 2447, 2543 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Discriminant = -96. Class = 4. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1 Values of the quadratic form are {0,8,12,15,20,23} mod 24, so this is a subset of A134517. - R. J. Mathar, Jul 30 2008 Is this the same sequence as A134517? REFERENCES Z. I. Borevich and I. R. Shafarevich, Number Theory. D. B. Zagier, Zetafunktionen und quadratische Koerper. LINKS EXAMPLE a(2)=47 because we can write 47=-1^2+8*1*2+8*2^2 (or 47=15*1^2+24*1*1+8*1^2). CROSSREFS Cf. A141373, A107003, A141375 (d = -96). Sequence in context: A130063 A183010 A134517 * A140614 A001124 A139501 Adjacent sequences:  A141373 A141374 A141375 * A141377 A141378 A141379 KEYWORD nonn AUTHOR Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008 EXTENSIONS More terms from Arkadiusz Wesolowski, Jul 25 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 04:39 EDT 2019. Contains 327187 sequences. (Running on oeis4.)