OFFSET
1,1
COMMENTS
Discriminant = 60. Class = 4. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1
This is also the list of primes p such that p = 3 or p is congruent to 7 or 43 mod 60. - Jean-François Alcover, Oct 28 2016
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory.
LINKS
Juan Arias-de-Reyna, Table of n, a(n) for n = 1..10000
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
EXAMPLE
a(3)=43 because we can write 43=-2*1^2+6*1*3+3*3^2 (or 43=7*1^2+12*1*2+3*2^2).
MATHEMATICA
Select[Prime[Range[500]], # == 3 || MatchQ[Mod[#, 60], 7|43]&] (* Jean-François Alcover, Oct 28 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 24 2008
STATUS
approved