login
A141212
a(n) = 1, if n == {1,3,4} mod 6; otherwise 0.
0
1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1
OFFSET
1,1
FORMULA
a(n) = 1 if n is in A029739, otherwise 0.
Begin with the sequence S: (1,0,1,0,1,0,...) and create a hole every 3n-th place: 1,0_1,0_1,0_1,0_,... Then insert terms of the sequence S in the holes.
From R. J. Mathar, Jun 17 2008: (Start)
O.g.f.: x(1+x^2+x^3)/((1-x)(1+x)(x^2+x+1)(x^2-x+1)).
a(n) = 1/2+A049347(n-1)/2-(-1)^n/6-A087204(n)/6 = a(n-6). (End)
a(n) = ((Fibonacci(n+4) mod 4) mod 3) mod 2. - Gary Detlefs, Dec 29 2010
EXAMPLE
a(7) = 1 since 7 == 1 mod 6.
MATHEMATICA
Table[If[MemberQ[{1, 3, 4}, Mod[n, 6]], 1, 0], {n, 120}] (* or *) PadRight[{}, 120, {1, 0, 1, 1, 0, 0}] (* Harvey P. Dale, May 03 2013 *)
CROSSREFS
Sequence in context: A353815 A156258 A132138 * A341347 A137893 A108882
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jun 14 2008
STATUS
approved