login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141205 Let sequences X and Y consist of the least positive integers such that 2X+Y is the complement of X and X+Y is the complement of Y, starting with X(1)=1 and Y(1)=1; then this sequence equals 2X+Y, while X=A141204, Y=A141206 and X+Y=A141207. 4
3, 7, 12, 16, 19, 25, 28, 32, 36, 41, 44, 48, 54, 57, 63, 66, 70, 73, 77, 83, 86, 92, 95, 98, 104, 108, 111, 116, 120, 124, 127, 133, 137, 142, 146, 149, 154, 158, 162, 165, 168, 174, 178, 184, 187, 190, 194, 197, 203, 207, 212, 216, 219, 225, 228, 234, 238, 241 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Complement of A141204.

LINKS

Paul D Hanna, Table of n, a(n) for n = 1..420

FORMULA

CONJECTURES on evaluating limits.

The following limits exist for some irrational q and r:

Limit X(n)/n = 1 + q, Limit {2X+Y}(n)/n = 1 + 1/q and

Limit Y(n)/n = 1 + r, Limit {X+Y}(n)/n = 1 + 1/r.

Thus q and r can be defined by:

Limit X(n)/{2X+Y}(n) = q = (1 + q)/(3 + 2*q + r) and

Limit Y(n)/{X+Y}(n) = r = (1 + r)/(2 + r + q).

Therefore q = least positive real root that satisfies:

1 - 4*q + 2*q^2 + 2*q^3 = 0, giving q = 0.31544880690757230308868993...

Also, r = least positive real root that satisfies:

2 - 4*r + r^3 = 0, giving r = 0.5391888728108891165258759...

EXAMPLE

Union of X and 2X+Y = positive integers:

X=[1,2,4,5,6,8,9,10,11,13,14,15,17,18,20,21,22,23,24,...];

2X+Y=[3,7,12,16,19,25,28,32,36,41,44,48,54,57,63,66,70,...].

Limit X(n)/{2X+Y}(n) = 0.3154488069...

Union of Y and X+Y = positive integers:

Y=[1,3,4,6,7,9,10,12,14,15,16,18,20,21,23,24,26,27,29,...];

X+Y=[2,5,8,11,13,17,19,22,25,28,30,33,37,39,43,45,48,50,...].

Limit Y(n)/{X+Y}(n) = 0.5391888728...

PROG

(PARI) /* Print a(n), n=1..100: */ {A=[1]; B=[3]; C=[1]; D=[2]; print1(B[1]", "); for(n=1, 100, for(j=2, 4*n, if(setsearch(Set(concat(A, B)), j)==0, At=concat(A, j); for(k=2*j+1, 6*n, if(setsearch(Set(concat(At, B)), k)==0, if(setsearch(Set(concat(C, D)), k-2*j)==0, if(setsearch(Set(concat(C, D)), k-j)==0, A=At; B=concat(B, k); C=concat(C, k-2*j); D=concat(D, k-j); print1(B[ #B]", "); break); break))))))}

CROSSREFS

Cf. A141204 (X), A141206 (Y), A141207 (X+Y).

Sequence in context: A061559 A165990 A160998 * A310237 A310238 A299638

Adjacent sequences:  A141202 A141203 A141204 * A141206 A141207 A141208

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 21 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 10:13 EDT 2019. Contains 324234 sequences. (Running on oeis4.)