OFFSET
1,1
COMMENTS
Discriminant = 48. Class = 2. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.
Values of the quadratic form are {0,3,8,11} mod 12, so all values with the exception of 3 are also in A068231. - R. J. Mathar, Jul 30 2008
Is this the same sequence (apart from the initial 3) as A068231?
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
EXAMPLE
a(3)=23 because we can write 23= -1^2+6*1*2+3*2^2 (or 23=8*1^2+12*1*1+3*1^2).
MATHEMATICA
Reap[For[p = 2, p < 2000, p = NextPrime[p], If[FindInstance[p == -x^2 + 6*x*y + 3*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 12 2008
EXTENSIONS
More terms from Colin Barker, Apr 05 2015
STATUS
approved