OFFSET
1,1
COMMENTS
Discriminant = 41. Class = 1. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.
It appears that this is the same as "Primes that are squares (mod 41)", cf. A038919 and A373751. - M. F. Hasler, Jun 29 2024
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
EXAMPLE
a(3) = 23 because we can write 23 = 2*3^2+3*3*1-4*1^2 (or 23 = 2*2^2+7*2*1+1^2).
MATHEMATICA
Reap[For[p = 2, p < 1000, p = NextPrime[p], If[FindInstance[p == 2*x^2 + 3*x*y - 4*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2016 *)
PROG
(PARI) select(p->isprime(p)&&qfbsolve(Qfb(1, 7, 2), p), [1..1500]) \\ This is to provide a generic characteristic function ("is_A141181") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016
CROSSREFS
Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).
Primes in A035269.
A subsequence of (and may possibly coincide with) A038919. - R. J. Mathar, Jul 22 2008
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
KEYWORD
nonn
AUTHOR
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 12 2008
STATUS
approved