The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141166 Primes of the form x^2+15*x*y-y^2. 8
 37, 53, 173, 193, 229, 241, 347, 359, 383, 439, 443, 449, 461, 503, 509, 541, 593, 607, 617, 619, 643, 691, 907, 967, 977, 1019, 1051, 1063, 1097, 1109, 1249, 1277, 1291, 1303, 1321, 1399, 1429, 1583, 1667, 1741, 1783, 1993, 1997, 2003, 2087, 2137, 2143, 2333, 2347, 2351 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Discriminant = 229. Class = 3. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d = b^2-4ac. They can represent primes only if gcd(a,b,c)=1. [Edited by M. F. Hasler, Jan 27 2016] Appears to be the complement of A141165 in A268155, primes that are squares mod 229. - M. F. Hasler, Jan 27 2016 REFERENCES Z. I. Borevich and I. R. Shafarevich, Number Theory D. B. Zagier, Zetafunktionen und quadratische Koerper LINKS Juan Arias-de-Reyna, Table of n, a(n) for n = 1..10000 N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references) EXAMPLE a(2)=53 because we can write 53= 3^2+15*3*1-1^2 MATHEMATICA lim = 100; Rest@ Union@ Abs@ Flatten@ Table[x^2 + 15 x y - y^2, {x, lim}, {y, lim}] /. n_ /; CompositeQ@ n -> Nothing (* Michael De Vlieger, Jan 27 2016 *) PROG (PARI) is_A141166(p)=qfbsolve(Qfb(1, 15, -1), p) \\ Returns nonzero (actually, a solution [x, y]) iff p is a member of the sequence. For efficiency it is assumed that p is prime. Example usage: select(is_A141166, primes(500)) - M. F. Hasler, Jan 27 2016 CROSSREFS Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). A141165 (d=229). For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link. Sequence in context: A330339 A036540 A225214 * A242930 A139918 A289510 Adjacent sequences:  A141163 A141164 A141165 * A141167 A141168 A141169 KEYWORD nonn AUTHOR Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 12 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 13:07 EDT 2020. Contains 333151 sequences. (Running on oeis4.)