|
|
A141086
|
|
a(n) = prime(2*n^2) - 2*n^2.
|
|
0
|
|
|
1, 11, 43, 99, 179, 287, 423, 591, 791, 1023, 1289, 1589, 1935, 2301, 2731, 3159, 3641, 4165, 4749, 5333, 5975, 6653, 7403, 8159, 8927, 9809, 10739, 11609, 12659, 13601, 14697, 15815, 17033, 18167, 19391, 20635, 22011, 23379, 24809, 26243, 27831
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..41.
|
|
FORMULA
|
a(n) = A014689(A001105(n)). - Michel Marcus, Mar 08 2019
|
|
EXAMPLE
|
a(1) = prime(2*1^2) - 2*1^2 = prime(2) - 2 = 3 - 2 = 1.
a(2) = prime(2*2^2) - 2*2^2 = prime(8) - 8 = 19 - 8 = 11.
|
|
MAPLE
|
a:=proc(n) options operator, arrow: ithprime(2*n^2)-2*n^2 end proc: seq(a(n), n=1..45); # Emeric Deutsch, Aug 07 2008
|
|
MATHEMATICA
|
Prime[#]-#&/@(2*Range[50]^2) (* Harvey P. Dale, May 04 2016 *)
|
|
PROG
|
(PARI) a(n) = my(m = 2*n^2); prime(m) - m; \\ Michel Marcus, Mar 08 2019
|
|
CROSSREFS
|
Cf. A001105 (2*n^2), A014689 (prime(n) - n).
Sequence in context: A031904 A305708 A022279 * A142039 A196153 A213763
Adjacent sequences: A141083 A141084 A141085 * A141087 A141088 A141089
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Juri-Stepan Gerasimov, Jul 31 2008
|
|
EXTENSIONS
|
Corrected and extended by Emeric Deutsch, Aug 07 2008
|
|
STATUS
|
approved
|
|
|
|