This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141041 a(n) = ((3 + 2*sqrt(3))^n + (3 - 2*sqrt(3))^n)/2. 4
 1, 3, 21, 135, 873, 5643, 36477, 235791, 1524177, 9852435, 63687141, 411680151, 2661142329, 17201894427, 111194793549, 718774444575, 4646231048097, 30033709622307, 194140950878133, 1254946834135719, 8112103857448713 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (6, 3). FORMULA G.f.: (1-3*x)/(1-6*x-3*x^2). - Philippe Deléham, Mar 03 2012 a(n) = 6*a(n-1) + 3*a(n-2), a(0) = 1, a(1) = 3 . - Philippe Deléham, Mar 03 2012 a(n) = Sum{k, 0<=k<=n} A201701(n,k)*3^(n-k).- Philippe Deléham, Mar 03 2012 G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(4*k-3)/(x*(4*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013 MATHEMATICA Clear[f, n] f[n_] = ((3 + 2*Sqrt[3])^n + (3 - 2*Sqrt[3])^n)/2 Table[FullSimplify[f[n]], {n, 0, 20}] LinearRecurrence[{6, 3}, {1, 3}, 30] (* Harvey P. Dale, Aug 25 2014 *) CROSSREFS Cf. A011943, A081336, A034478. For n>0, a(n) = 3*abs(A099842(n-1)). Sequence in context: A125701 A274586 A124812 * A079753 A137969 A303349 Adjacent sequences:  A141038 A141039 A141040 * A141042 A141043 A141044 KEYWORD nonn AUTHOR Roger L. Bagula, Aug 18 2008 EXTENSIONS Edited by N. J. A. Sloane, Aug 24 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 16:12 EDT 2019. Contains 327078 sequences. (Running on oeis4.)