login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141035 Period 10: repeat 0, 0, 4, 2, -2, 4, 2, -4, -4, -2. 0
0, 0, 4, 2, -2, 4, 2, -4, -4, -2, 0, 0, 4, 2, -2, 4, 2, -4, -4, -2, 0, 0, 4, 2, -2, 4, 2, -4, -4, -2, 0, 0, 4, 2, -2, 4, 2, -4, -4, -2, 0, 0, 4, 2, -2, 4, 2, -4, -4, -2, 0, 0, 4, 2, -2, 4, 2, -4, -4, -2, 0, 0, 4, 2, -2, 4, 2, -4, -4, -2, 0, 0, 4, 2, -2, 4, 2, -4, -4, -2, 0, 0, 4, 2, -2, 4, 2, -4, -4, -2, 0, 0, 4, 2, -2, 4, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..96.

Index entries for linear recurrences with constant coefficients, signature (0,-1,0,-1,0,-1,0,-1).

FORMULA

a(n) = -(1/5)*((n mod 10) + ((n+1) mod 10) - 3*((n+3) mod 10) - ((n+4) mod 10) + 3*((n+5) mod 10) - 2*((n+6) mod 10) - ((n+7) mod 10) + 2*((n+8) mod 10)), with n >= 0. - Paolo P. Lava, Aug 04 2008

G.f.: 2*x^2*(1+x)*(x^4+x^3+2*x^2-x+2) / ( (1+x+x^2+x^3+x^4)*(x^4-x^3+x^2-x+1) ). - R. J. Mathar, Oct 08 2011

MATHEMATICA

PadRight[{}, 100, {0, 0, 4, 2, -2, 4, 2, -4, -4, -2}] (* Jinyuan Wang, Feb 26 2020 *)

CROSSREFS

Sequence in context: A216671 A251628 A170988 * A100854 A194688 A317389

Adjacent sequences: A141032 A141033 A141034 * A141036 A141037 A141038

KEYWORD

sign,easy,less

AUTHOR

Paul Curtz, Jul 30 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 18:13 EST 2022. Contains 358431 sequences. (Running on oeis4.)