The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140895 A Lucas-Binet triangle read by rows: t(n,m)=((( 1 + Sqrt[Prime[n]]))^m + (( 1 - Sqrt[Prime[n]]))^m)/2. 1
 1, 1, 4, 1, 6, 16, 1, 8, 22, 92, 1, 12, 34, 188, 716, 1, 14, 40, 248, 976, 4928, 1, 18, 52, 392, 1616, 9504, 44864, 1, 20, 58, 476, 1996, 12560, 61048, 348176, 1, 24, 70, 668, 2876, 20448, 104168, 658192, 3608080, 1, 30, 88, 1016, 4496, 37440, 200768 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Row sums are: {1, 5, 23, 123, 951, 6207, 56447, 424335, 4394527, 67853311, ...}. REFERENCES Arthur Benjamin and Jennifer J. Quinn, Fibonacci and Lucas Identities through Colored Tilings, Utilitas Mathematica, Vol 56, pp. 137-142, November, 1999. http://www.math.hmc.edu/~benjamin/papers.html LINKS FORMULA t(n,m)=((( 1 + Sqrt[Prime[n]]))^m + (( 1 - Sqrt[Prime[n]]))^m)/2. EXAMPLE {1}, {1, 4}, {1, 6, 16}, {1, 8, 22, 92}, {1, 12, 34, 188, 716}, {1, 14, 40, 248, 976, 4928}, {1, 18, 52, 392, 1616, 9504, 44864}, {1, 20, 58, 476, 1996, 12560, 61048, 348176}, {1, 24, 70, 668, 2876, 20448, 104168, 658192, 3608080}, {1, 30, 88, 1016, 4496, 37440, 200768, 1449856, 8521216, 57638400} MATHEMATICA Binet[n_, m_] = ((( 1 + Sqrt[Prime[n]]))^m + (( 1 - Sqrt[Prime[n]]))^m)/2; a = Table[Table[ExpandAll[Binet[n, m]], {m, 1, n}], {n, 1, 10}]; Flatten[a] CROSSREFS Sequence in context: A298829 A056140 A225419 * A343599 A191714 A126150 Adjacent sequences:  A140892 A140893 A140894 * A140896 A140897 A140898 KEYWORD nonn,tabl AUTHOR Roger L. Bagula and Gary W. Adamson, Jul 23 2008 EXTENSIONS Edited by N. J. A. Sloane, Aug 01 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 10:18 EDT 2021. Contains 343204 sequences. (Running on oeis4.)