login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140870 8*P_4(2n), 8 times the Legendre Polynomial of order 4 at 2n. 2

%I

%S 3,443,8483,44283,141443,347003,721443,1338683,2286083,3664443,

%T 5588003,8184443,11594883,15973883,21489443,28323003,36669443,

%U 46737083,58747683,72936443,89552003,108856443,131125283,156647483,185725443,218675003,255825443

%N 8*P_4(2n), 8 times the Legendre Polynomial of order 4 at 2n.

%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/LegendrePolynomial.html">Legendre Polynomial.</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F Legendre polynomial LP_4(x) = (35*x^4-30*x^2+3)/8. - _Klaus Brockhaus_, Nov 21 2009

%F From _Klaus Brockhaus_, Nov 21 2009: (Start)

%F a(n) = 560*n^4-120*n^2+3.

%F a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4)+13440 for n > 3; a(0)=3, a(1)=443, a(2)=8483, a(3)=44283.

%F G.f.: (3+428*x+6298*x^2+6268*x^3+443*x^4)/(1-x)^5. (End)

%p A140870 := proc(n)

%p 8*orthopoly[P](4,2*n) ;

%p end proc: # _R. J. Mathar_, Oct 24 2011

%t Table[8 LegendreP[4,2n],{n,0,50}]

%t LinearRecurrence[{5, -10, 10, -5, 1}, {3, 443, 8483, 44283, 141443}, 30] (* _Vincenzo Librandi_, Oct 04 2015 *)

%o (MAGMA)

%o P<x> := PolynomialRing(IntegerRing());

%o LP4:=LegendrePolynomial(4);

%o [ Evaluate(8*LP4, 2*n): n in [0..26] ]; // _Klaus Brockhaus_, Nov 18 2009

%o (PARI) {for(n=0, 26, print1(subst(8*pollegendre(4), x, 2*n), ","))} \\ _Klaus Brockhaus_, Nov 21 2009

%o (MAGMA) [560*n^4 - 120*n^2 + 3: n in [0..30]]; // _Vincenzo Librandi_, Oct 04 2015

%Y Cf. A144124.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_, Nov 17 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 16:32 EDT 2021. Contains 343177 sequences. (Running on oeis4.)