login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140870 8*P_4(2n), 8 times the Legendre Polynomial of order 4 at 2n. 2
3, 443, 8483, 44283, 141443, 347003, 721443, 1338683, 2286083, 3664443, 5588003, 8184443, 11594883, 15973883, 21489443, 28323003, 36669443, 46737083, 58747683, 72936443, 89552003, 108856443, 131125283, 156647483, 185725443, 218675003, 255825443 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..26.

Eric W. Weisstein, Legendre Polynomial.

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

Legendre polynomial LP_4(x) = (35*x^4-30*x^2+3)/8. - Klaus Brockhaus, Nov 21 2009

From Klaus Brockhaus, Nov 21 2009: (Start)

a(n) = 560*n^4-120*n^2+3.

a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4)+13440 for n > 3; a(0)=3, a(1)=443, a(2)=8483, a(3)=44283.

G.f.: (3+428*x+6298*x^2+6268*x^3+443*x^4)/(1-x)^5. (End)

MAPLE

A140870 := proc(n)

        8*orthopoly[P](4, 2*n) ;

end proc: # R. J. Mathar, Oct 24 2011

MATHEMATICA

Table[8 LegendreP[4, 2n], {n, 0, 50}]

LinearRecurrence[{5, -10, 10, -5, 1}, {3, 443, 8483, 44283, 141443}, 30] (* Vincenzo Librandi, Oct 04 2015 *)

PROG

(MAGMA)

P<x> := PolynomialRing(IntegerRing());

LP4:=LegendrePolynomial(4);

[ Evaluate(8*LP4, 2*n): n in [0..26] ]; // Klaus Brockhaus, Nov 18 2009

(PARI) {for(n=0, 26, print1(subst(8*pollegendre(4), x, 2*n), ", "))} \\ Klaus Brockhaus, Nov 21 2009

(MAGMA) [560*n^4 - 120*n^2 + 3: n in [0..30]]; // Vincenzo Librandi, Oct 04 2015

CROSSREFS

Cf. A144124.

Sequence in context: A086207 A092052 A139999 * A157601 A094454 A261004

Adjacent sequences:  A140867 A140868 A140869 * A140871 A140872 A140873

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Nov 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 24 04:07 EDT 2017. Contains 283984 sequences.