%I #23 Jun 27 2024 08:59:14
%S 53,263,683,1103,1523,1733,2153,3203,3413,3623,3833,4253,4463,4673,
%T 5303,6143,6353,6563,6983,7193,7823,8243,8663,9293,9923,10133,10343,
%U 10973,11393,11813,12653,13913,14543,14753,15173,15383,15803,16223,16433
%N Primes of the form 210k + 53.
%C These are primes p == k (mod prime(k)) for k = 1..4. The subsequence of primes == k (mod prime(k)) for k = 1..5 is 1523, 3833, 6143, 15383 (not in OEIS?). - _Zak Seidov_, Jun 25 2018
%t Select[53+210Range[0,150],PrimeQ] (* _Ray Chandler_, Apr 29 2010 *)
%o (Magma) [ a: n in [0..900] | IsPrime(a) where a is 210*n+53] // _Vincenzo Librandi_, Nov 24 2010
%Y Cf. A073102.
%K nonn
%O 1,1
%A _Juri-Stepan Gerasimov_, Jul 04 2008
%E Corrected and extended by several authors, Apr 29 2010