This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140821 Coefficients of Hodge diamond GCD binomial product 'X' matrices as polynomials: matrix example; M={{2,0,2}. {0,2,0], {2,0,2}: M(d, x, y)= Sum[Sum[If[n == m, GCD[d - 1, m - 1], If[n == d - m + 1, GCD[d - 1, n - 1], 0]]*x^(n - 1)*y^(m - 1), {n, 1, d}], {m, 1, d}] . 0
 2, 2, 4, 2, 4, 6, 6, 6, 6, 8, 8, 12, 8, 8, 10, 10, 20, 20, 10, 10, 12, 12, 60, 60, 60, 12, 12, 14, 14, 42, 70, 70, 42, 14, 14, 16, 16, 112, 112, 280, 112, 112, 16, 16, 18, 18, 72, 504, 252, 252, 504, 72, 18, 18 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Row sums are: {0, 4, 10, 24, 44, 80, 228, 280, 792, 1728}. LINKS FORMULA M(d, x, y)=Sum[Sum[If[n == m, Binomial[d - 1, m - 1]* GCD[d - 1, m - 1], If[n == d - m + 1, Binomial[d - 1, n - 1] *GCD[d - 1, n - 1], 0]]*x^(n - 1)*y^(m - 1), {n, 1, d}], {m, 1, d}] ; a(n,m)=Coefficients(M(n,x,1)). EXAMPLE {}, {2, 2}, 4, 2, 4}, {6, 6, 6, 6}, {8, 8, 12, 8, 8}, {10, 10, 20, 20, 10, 10}, {12, 12, 60, 60, 60, 12, 12}, {14, 14, 42, 70, 70, 42, 14, 14}, 16, 16, 112, 112, 280, 112, 112, 16, 16}, {18, 18, 72, 504, 252, 252, 504, 72, 18, 18} MATHEMATICA Clear[M, y, x] M[d_, x_, y_] := Sum[Sum[If[n == m, Binomial[d - 1, m - 1]* GCD[d - 1, m - 1], If[n == d - m + 1, Binomial[d - 1, n - 1] *GCD[d - 1, n - 1], 0]]*x^(n - 1)*y^(m - 1), {n, 1, d}], {m, 1, d}]; Table[CoefficientList[M[d, x, 1], x], {d, 1, 10}] Flatten[%] Table[Apply[Plus, CoefficientList[M[d, x, 1], x]], {d, 1, 10}] CROSSREFS Cf. A140685. Sequence in context: A091820 A171922 A306743 * A063789 A106264 A278535 Adjacent sequences:  A140818 A140819 A140820 * A140822 A140823 A140824 KEYWORD nonn,uned,tabl AUTHOR Roger L. Bagula and Mats Granvik, Jul 16 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 04:06 EDT 2019. Contains 323377 sequences. (Running on oeis4.)